Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Evaluación del uso de sistema de cobertura de malla en plantas de uva de mesa ‘Thompson Seedless’

Resumen

En Chile, una parte importante de la producción de uva de mesa se produce en el Desierto de Atacama, caracterizándose por un ambiente de altas temperaturas, alta radiación solar y velocidad del viento. Con el objetivo de aminorar los efectos indeseados sobre las plantas y su rendimiento, se evaluó en Vitis vinifera L., uva de mesa ‘Thompson Seedless’, el uso de un sistema de cobertura total conformado por una malla plástica de color blanco y de 80% de porosidad, como protección de las plantas a los efectos del viento y la radiación solar en el Valle del Huasco, Chile. Se evaluaron dos tratamientos, (a) testigo en condiciones naturales y totalmente expuestas y (b) plantas bajo el sistema de cobertura (malla), con 10 repeticiones mediante un diseño completamente aleatorizado. Se evaluaron el crecimiento vegetativo, variables fisiológicas, productivas, así como también la temperatura, humedad relativa, velocidad del viento y radiación solar. El sistema de cobertura redujo la velocidad de viento entre 35 y 55% y la radiación incidente en un 14%. Las condiciones de temperatura y humedad relativa no se alteraron. Los cambios ambientales producidos generan cambios en las plantas protegidas bajo el sistema de cobertura en relación a las plantas expuestas, principalmente en el tamaño de las hojas y porcentaje de brotación, sin embargo, no se detectó efecto sobre los rendimientos y calidad de la fruta.

Palabras clave

Vid, Efecto del viento, Sombreamiento, Déficit de presión de vapor, Radiación solar

PDF

Citas

  1. Anten, N., R. Alcalá-Herrera, F. Schieving e Y. Onoda. 2010. Wind and mechanical stimuli differentially affect leaf traits in Plantago major. New Phytol. 188, 554-564. Doi: 10.1111/j.1469-8137.2010.03379.x
  2. Bastías R., L. Manfrini y L. Corelli-Grappadelli. 2012. Exploring the potential use of photo-selective nets for fruit growth regulation in apple. Chil. J. Agric. Res. 72(2), 224-231.
  3. Bergqvist, J., N. Dokoozlian y N. Ebisuda. 2001. Sunlight exposure and temperatura effects on Berry growth and composition of Cabernet Sauvignon and Grenache in the Central Joaquin Valley California. Am. J. Enol. Viticult. 52, 1-7.
  4. Bertamini, M. y N. Nedunchezhian. 2003. Photosinthetic functioning of individual grapevine leaves (Vitis vinífera L. cv. Pinot noir) during ontogeny in the field. Vitis 42, 12-17.
  5. Bird, P., T. Jackson, G. Kearny y A. Roach. 2007. Effects of windbreak structure on shelter characteristics. Aust. J. Exp. Agr. 47, 727-737. Doi: 10.1071/EA06086
  6. Callejas, R., E. Kania, A. Contreras, C. Peppi y L. Morales. 2013. Evaluación de un método no destructivo para estimar las concentraciones de clorofila en hojas de variedades de uva de mesa. Idesia 31(4), 19-26. Doi: 10.4067/S0718-34292013000400003
  7. Carey, V., W. Piennar y E. Archer. 2007. Efecto del viento en el funcionamiento de la vid en Stellenbosch, Sudáfrica. Rev. Enol. 3, 1-11.
  8. Choné, X., C. Van Leeuwen, D. Dubourdieu y J. Pierre. 2001. Stem water potential is a sensitive indicator of grapevine water status. Ann. Bot. 87, 477-483. Doi: 10.1006/anbo.2000.1361
  9. Climatología de Chile. 2001. Meteorología. Dirección meteorológica de Chile, Santiago.
  10. CMNUUC, (Convención Marco de las Naciones Unidas sobre el Cambio Climático). 2016. Conferencia de la ONU sobre cambio climático. Bonn, Alemania.
  11. De Palma, L., L. Tarricone, G. Vox, P. Limosani, M. de Michele y V. Novello. 2012. Semiforzatura precoce con film colorati: fisiologia delle viti e qualità del prodotto. Riv. Frutt. 74(1-2), 32-38.
  12. Dry, P., S. Reed y G. Potter. 1989. The effect of wind on the performance of Cabernet Franc grapevines. Acta Hortic. 240, 143-146. Doi: 10.17660/ActaHortic.1989.240.24
  13. Ferguson, J., J. Tarara, L. Mills, G. Grove y M. Keller. 2011. Dynamic termal time model of cold hardiness for dormant grapevine buds. Ann. Bot. 107, 389-396. Doi: 10.1093/aob/mcq263
  14. Ferreyra, R., G. Selles, J. Peralta y J. Valenzuela. 2002. Effect of water stress applied at different development periods of Cabernet Sauvignon grapevine on production and wine quality. Acta Hortic. 646, 27-33. Doi: 10.17660/ActaHortic.2004.664.27
  15. Gálvez, R. 2011. Evaluación del uso conjunto del potencial hídrico xilemático y el déficit de presión de vapor en el manejo del riego en vides de mesa. Tesis de maestría. Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago.
  16. Gálvez, R., R. Callejas, G. Reginato y M.C. Peppi. 2014. Irrigation schedule on table grapes by stem water potential and vapor pressure deficit allows to optimize water use. Ciência Téc. Vitiv. 29(2) 60-70. Doi: 10.1051/ctv/20142902060
  17. Greer, D. y M. Weedon. 2014. Temperature-dependent responses of the berry developmental processes of three grapevine (Vitis vinifera) cultivars. New Zeal. J. Crop Hort. Sci. 42, 233-246. Doi: 10.1080/01140671.2014.894921
  18. Guyot, G. 1989. Les effets aérodynamiques et microclimatiques des brise-vent et des amenagements régionaux. pp. 485-520. En: Reifsnyder, W.S. y T.O. Darnhofer (Eds.). Meteorology and agroforestry. ICRAF, Nairobi, Kenia.
  19. Hendrickson, L., M. Ball, C. Osmond, R. Furbank y W. Soon-Chow. 2003. Assessment of photoprotection mechanisms of grapevines at low temperature. Funct. Plant Biol. 30, 631-642. Doi: 10.1071/FP02114
  20. Laker, M. 2004. The effect of atmospheric and soil conditions on the grapevine water status. Tesis de maestría. Faculty of AgriSciences, Stellenbosch University, Stellenbosch, Sudáfrica.
  21. Márquez, J., G. Martínez y H. Núñez. 2007. Portainjerto, fertilidad de yemas y producción de variedades de uva de mesa. Rev. Fitotec. Mex. 30(1), 89-95.
  22. McLeod, C. 2006. Cortavientos en agricultura. Publicaciones INIA Kampenaike, Punta Arenas, Chile.
  23. Novello, V. y L. de Palma. 2013. Shade nets on table grapes. pp. 133-144. En: Proc., 1er Simposium Internacional de Vid. 24 y 25 de enero 2013. Hermosillo, México.
  24. NRC (National Research Centre for Grapes), 2008. Use of shade nets for early sprouting in vineyards after backward pruning. En: Annual Report 2007-08. Pune, India.
  25. ODEPA (Oficina de Estudios y Políticas Agrarias). 2010. Superficie plantada y producción estimada país año 2010. En: http//www.odepa.cl/servlet/artículos; consulta: octubre de 2017.
  26. Onoda, Y. y N.P.R. Anten. 2011. Challenges to understand plant responses to wind. Plant Signal. Behav. 6(7), 1057-1059. Doi: 10.4161/psb.6.7.15635
  27. Pallioti, A., A. Cartechini and F. Ferranti. 2000. Morpho-anatomical and physiological characteristics of primary and lateral shoots leaves of Cabernet Franc and Trebbiano Toscano grapevines under two irradiance regimes. Am. J. Enol. Viticult. 51, 122-130.
  28. Pentón, G., W. Torres y G. Martín. 2006. Estimación del área foliar a partir de observaciones morfológicas convencionales en Morus alba var. Acorazonada. Pastos y Forrajes 29, 247-251.
  29. Pugliese M.B., 2009. Influencia del deshoje y despunte en el desarrollo del color y otras variables de calidad en la cultivar Red Globe bajo malla antigranizo. Tesis de maestría. Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina.
  30. Riveros, R. 2002. Efectos del riego deficitario controlado sobre la producción y la calidad del fruto en uva de mesa (sultanina). Tesis de pregado. Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago.
  31. Roa, A. 2013. Influencia de la exposición del racimo a la radiación solar y su efecto sobre la pérdidas de calidad por color en la variedad Thompson Seedless. Tesis de maestría. Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago.
  32. Rodríguez, M. y D. Morales. 2015. Efecto de mallas sombreadoras sobre la producción y calidad de frutos de arándano (Vaccinium corymbosum L.) cv. Brigitta. Scientia Agrop. 6(1), 41-50. Doi: 10.17268/sci.agropecu.2015.01.04
  33. Romero-Gámez, M., E. Suárez-Rey y T. Soriano. 2012. Características radiativas de nueve mallas de uso agrícola. Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Consejería de Agricultura y Pesca, Sevilla, España.
  34. Shahak, Y., K. Ratner, Y.E. Giller, N. Zur, E. Or, E.E. Gussakovsky, R. Stern, P. Sarig, E. Raban, E. Harcavi, I. Doron e Y. Greenblat-Avron. 2008. Improving solar energy utilization, productivity and fruit quality in orchards and vineyards by photoselective netting. Acta Hortic. 772, 65-72. Doi: 10.17660/ActaHortic.2008.772.7
  35. Sáenz-Diez, D. 2009. Respuesta fotosintética de hojas de vid desarrolladas a diferentes condiciones de luz. Tesis de maestría. Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago.
  36. Scarabino A., S. Delnero, M. Camocardi y M. Giannecchini. 2007. Resistencia aerodinámica de telas y mallas de distinta porosidad. En: Actas de la XXX Reunión de ASADES. 13-16 nov. 2007. San Luis, Argentina.
  37. Suazo, J. 1999. Evaluación de un protector solar en uva de mesa (Vitis vinífera) cv. Thompson Seedless. Tesis de pregrado. Facultad de Agronomía, Universidad de Concepción, Chillán, Chile.
  38. Van Gardingen, P. y J. Grace. 1991. Plants and wind. Adv. Bot. Res. 18, 189-253. Doi: 10.1016/S0065-2296(08)60023-3

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 3 4 > >> 

También puede {advancedSearchLink} para este artículo.