Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Efecto de bioestimulantes sobre la acumulación de materia seca e intercambio de gases en plantas de plátano (Musa AAB)

‘Hartón’ plantain plants in greenhouse. Granada (Colombia).  Photo: D. Mateus-Cagua

Resumen

Los bioestimulantes son productos que potencialmente pueden mejorar el crecimiento y desarrollo de las plantas al modificar procesos fisiológicos. En este estudio se evaluó la influencia de cuatro bioestimulantes en el crecimiento de plantas de plátano ‘Hartón’ e intercambio de gases en un periodo de la fase vegetativa. El experimento se desarrolló en el vivero de una finca productora de plátano en Fuente de Oro (Colombia), en un diseño de bloques completos al azar generalizados con cuatro repeticiones. Los tratamientos correspondieron a los bioestimulantes Bactox WP®: Bacillus subtilis (Bs); Baliente®: Bacillus amyloliquefaciens (Ba); Tierras de diatomeas®: dióxido de silicio (Si); Re-Leaf®: ácido salicílico (As) y el control (agua). Todos los productos mostraron tener un efecto positivo en la acumulación de materia seca (MS) total (entre 58,4 y 21,9%) y en la actividad fotosintética (en un máximo de 110 y 24,3% en primera y segunda evaluación) respecto al control, mientras que en ritmo de emisión foliar y contenido de clorofila no se encontraron diferencias (P>0,05) entre tratamientos. Plantas tratadas con Bs tuvieron la mayor acumulación de MS al finalizar el estudio y una alta actividad fotosintética constante. Mientras que Bs, Ba y Si lograron estimular una mayor actividad fotosintética temprana. De acuerdo con los resultados el uso de estos bioestimulantes durante esta fase vegetativa tiene efecto sobre procesos fisiológicos que mejoran la acumulación de MS en plantas de plátano, lo que podría capacitarlo para enfrentar la etapa de trasplante y aumentar las reservas para ser utilizadas durante su establecimiento y desarrollo en campo.

Palabras clave

Distribución de fotoasimilados, Plátano ‘Hartón’, Rizobacterias promotoras de crecimiento (PGPR), Bacillus, Silicio, Ácido salicílico

PDF (English)

Citas

Agarie, S., H. Uchida, W. Agata, F. Kubota, and P.B. Kaufman. 1998. Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L). Plant Prod. Sci. 1(2), 89-95. Doi: 10.1626/pps.1.89

Agarwal, P., P.C. Singh, V. Chaudhry, P.A. Shirke, D. Chakrabarty, A. Farooqui, C.S. Nautiyal, A.P. Sane, and V.A. Sane. 2019. PGPR-induced OsASR6 improves plant growth and yield by altering root auxin sensitivity and the xylem structure in transgenic Arabidopsis thaliana. J. Plant Physiol. 240, 153010. Doi: 10.1016/j.jplph.2019.153010

Ahmad, Z., J. Wu, L. Chen, and W. Dong. 2017. Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Sci. Rep. 7, 1777. Doi: 10.1038/s41598-017-01940-9

Anusuya, P. 2014. Studies on screening of banana genotypes against salt and water deficit stresses. PhD thesis. Tamil Nadu Agricultural University, Coimbatore, India.

Asari, S., D. Tarkowská, J. Rolčík, O. Novák, D.V. Palmero, S. Bejai, and J. Meijer. 2017. Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant. Planta 245(1), 15-30. Doi: 10.1007/s00425-016-2580-9

Aucique-Pérez, C.E., P.E. Menezes Silva, W.R. Moreira, F.M. DaMatta, and F.Á. Rodrigues. 2017. Photosynthesis impairments and excitation energy dissipation on wheat plants supplied with silicon and infected with Pyricularia oryzae. Plant Physiol. Biochem. 121, 196-205. Doi: 10.1016/j.plaphy.2017.10.023

Buah, J.N. and J.W. Tachie-Menson. 2015. Suitability of bud manipulation technique as an alternative to tissue culture in the production of suckers for plantains and bananas. Biotechnol. 14(1), 41-46. Doi: 10.3923/biotech.2015.41.46

Bulgari, R., G. Cocetta, A. Trivellini, P. Vernieri, and A. Ferrante. 2015. Biostimulants and crop responses: a review. Biol. Agric. Hort. 31(1), 1-17. Doi: 10.1080/01448765.2014.964649

Calvo, P., L. Nelson, and J.W. Kloepper. 2014. Agricultural uses of plant biostimulants. Plant Soil 383(1-2), 3-41. Doi: 10.1007/s11104-014-2131-8

Calvo, P., D.B. Watts, J.W. Kloepper, and H.A. Torbert. 2017. Effect of microbial-based inoculants on nutrient concentrations and early root morphology of corn (Zea mays). J. Plant Nutr. Soil Sci. 180(1), 56-70. Doi: 10.1002/jpln.201500616

Cao, W.L., X.C. Meng, and W. Ma. 2015. Effect of salicylic acid on photosynthesis, physio-biochemistry and quality of Panax ginseng under full sun shine in spring. China J. Chin. Materia Med. 40(18), 3553-3559. Doi: 10.4268/cjcmm20151808

Chaves, B., G. Cayón, and J.W. Jones. 2009. Modeling plantain (Musa AAB Simmonds) potential yield. Agron. Colomb. 27(3), 359-366.

Detmann, K.C., W.L. Araújo, S.C.V. Martins, L.M.V.P. Sanglard, J.V. Reis, E. Detmann, F.Á. Rodrigues, A. Nunes-Nesi, A.R. Fernie, and F.M. DaMatta. 2012. Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytologist 196(3), 752-762. Doi: 10.1111/j.1469-8137.2012.04299.x

Du Jardin, P. 2015. Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196, 3-14. Doi: 10.1016/j.scienta.2015.09.021

Elhakem, A.H. 2019. Impact of salicylic acid application on growth, photosynthetic pigments and organic osmolytes response in Mentha arvensis under drought stress. J. Biol. Sci. 19(6), 372-380. Doi: 10.3923/jbs.2019.372.380

FAOSTAT. 2016. Agriculture data. In: http://www.fao.org/faostat/en/#data/QC; consulted: Mach, 2018.

Galán-Saúco, V. and J. C. Robinson. 2013. Fisiología, clima y producción de banano. pp. 44-56. In: XX Reunião Internacional da Associação para a Cooperação em Pesquisa e Desenvolvimento Integral das Musáceas (Bananas e Plátanos). Fortaleza, Brazil.

Gao, X., C. Zou, L. Wang, and F. Zhang. 2006. Silicon decreases transpiration rate and conductance from stomata of maize plants. J. Plant Nutr. 29(9), 1637-1647. Doi: 10.1080/01904160600851494

Gemin, L.G., Á.F. Mógor, J.D.O. Amatussi, and G. Mógor. 2019. Microalgae associated to humic acid as a novel biostimulant improving onion growth and yield. Sci. Hortic. 256, 108560. Doi: 10.1016/j.scienta.2019.108560

Halpern, M., A. Bar-Tal, M. Ofek, D. Minz, T. Müller, and U. Yermiyahu. 2015. The use of biostimulants for enhancing nutrient uptake. Adv. Agron. 130, 141-174. Doi: 10.1016/bs.agron.2014.10.001

Helaly, M.N., H. El-Hoseiny, N.I. El-Sheery, A. Rastogi, and H.M. Kalaji. 2017. Regulation and physiological role of silicon in alleviating drought stress of mango. Plant Physiol. Biochem. 118, 31-44. Doi: 10.1016/j.plaphy.2017.05.021

Hooks, C.R.R., M.G. Wright, D.S. Kabasawa, R. Manandhar, and R.P.P. Almeida. 2008. Effect of banana bunchy top virus infection on morphology and growth characteristics of banana. Ann. Appl. Biol. 153(1), 1-9. Doi: 10.1111/j.1744-7348.2008.00233.x

Jalal, R.S., S.O. Bafeel, and A.E. Moftah. 2012. Effect of salicylic acid on growth, photosynthetic pigments and essential oil components of Shara (Plectranthus tenuiflorus) plants grown under drought stress conditions. Int. Res. J. Agric. Sci. Soil Sci. 2(6), 252-260.

Janda, T., O.K. Gondor, R. Yordanova, G. Szalai, and M. Pál. 2014. Salicylic acid and photosynthesis: signalling and effects. Acta Physiol. Plant. 36(10), 2537-2546. Doi: 10.1007/s11738-014-1620-y

Jang, J.H., S.-H. Kim, I. Khaine, M.J. Kwak, H.K. Lee, T.Y. Lee, W.Y. Lee, and S.Y. Woo. 2018. Physiological changes and growth promotion induced in poplar seedlings by the plant growth-promoting rhizobacteria Bacillus subtilis JS. Photosynthetica 56(4), 1188-1203. Doi: 10.1007/s11099-018-0801-0

Kauffman, G.L., D.P. Kneivel, and T.L. Watschke. 2007. Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop Sci. 47(1), 261-267. Doi: 10.2135/cropsci2006.03.0171

Kavino, M., S. Harish, N. Kumar, D. Saravanakumar, and R. Samiyappan. 2010. Effect of chitinolytic PGPR on growth, yield and physiological attributes of banana (Musa sp) under field conditions. Appl. Soil Ecol. 45(2), 71-77. Doi: 10.1016/j.apsoil.2010.02.003

Kurabachew, H. and K. Wydra. 2014. Induction of systemic resistance and defense-related enzymes after elicitation of resistance by rhizobacteria and silicon application against Ralstonia solanacearum in tomato (Solanum lycopersicum). Crop Prot. 57, 1-7. Doi: 10.1016/j.cropro.2013.10.021

Lavakush, J. Yadav, J.P. Verma, D.K. Jaiswal, and A. Kumar. 2014. Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecol. Eng. 62, 123-128. Doi: 10.1016/j.ecoleng.2013.10.013

Lavinsky, A.O., K.C. Detmann, J.V. Reis, R.T. Ávila, M.L. Sanglard, L.F. Pereira, L.M.V.P. Sanglard, F.A. Rodrigues, W.L. Araújo, and F.M. DaMatta. 2016. Silicon improves rice grain yield and photosynthesis specifically when supplied during the reproductive growth stage. J. Plant Physiol. 206, 125-132. Doi: 10.1016/j.jplph.2016.09.010

Magalhães, J.E.S., E.A. Ferreira, M.C. Oliveira, G.A.M. Pereira, D.V. Silva, and J.B Santos. 2016. Effect of plant-biostimulant on cassava initial growth. Rev. Ceres 63(2), 208-213. Doi: 10.1590/0034-737X201663020012

Maghsoudi, K., Y. Emam, and M. Ashraf. 2016a. Foliar application of silicon at different growth stages alters growth and yield of selected wheat cultivars. J. Plant Nutr. 39(8), 1194-1203. Doi: 10.1080/01904167.2015.1115876

Maghsoudi, K., Y. Emam, and M. Pessarakli. 2016b. Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. J. Plant Nutr. 39(7), 1001-1015. Doi: 10.1080/01904167.2015.1109108

Martínez, A.M. and D.G. Cayón. 2011. Dinámica del crecimiento y desarrollo del banano (Musa AAA Simmonds cvs. Gran Enano y Valery). Rev. Fac. Nac. Agron. Medellín 64(2), 6055-6064.

Mena-Violante, H.G. and V. Olalde-Portugal. 2007. Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Sci. Hortic. 113(1), 103-106. Doi: 10.1016/j.scienta.2007.01.031

Mia, M.A.B., Z.H. Shamsuddin, and M. Mahmood. 2010a. Use of plant growth promoting bacteria in banana: a new insight for sustainable banana production. Int. J. Agric. Biol. 12(3), 459-467.

Mia, M.A.B., Z.H. Shamsuddin, Z. Wahab, and M. Marziah. 2010b. Rhizobacteria as bioenhancer and biofertilizer for growth and yield of banana (Musa spp. cv. ‘Berangan’). Sci. Hortic. 126(2), 80-87. Doi: 10.1016/j.scienta.2010.06.005

Mohamed, H.I. and E.Z. Gomaa. 2012. Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress. Photosynthetica 50(2), 263-272. Doi: 10.1007/s11099-012-0032-8

Nazar, R., S. Umar, and N.A. Khan. 2015. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signal. Behav. 10(3), e1003751. Doi: 10.1080/15592324.2014.1003751

Njukwe, E., A. Tenkouano, D. Amah, K. Sadik, M. Pérez, M. Nyine, and T. Dubois. 2007. Macro-propagation of banana and plantain: training manual. International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria.

Posmyk, M.M. and K. Szafrańska. 2016. Biostimulators: a new trend towards solving an old problem. Front. Plant Sci. 7, 748. Doi: 10.3389/fpls.2016.00748

Saa, S., A. Olivos-Del Rio, S. Castro, and P.H. Brown. 2015. Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill.] DA Webb). Front. Plant Sci. 6, 87. Doi: 10.3389/fpls.2015.00087

Saia, S., G. Colla, G. Raimondi, E. Di Stasio, M. Cardarelli, P. Bonini, P. Vitaglione, S. De Pascale, and Y. Rouphael. 2019. An endophytic fungi-based biostimulant modulated lettuce yield, physiological and functional quality responses to both moderate and severe water limitation. Sci. Hortic. 256, 108595. Doi: 10.1016/j.scienta.2019.108595

Song, A., P. Li, F. Fan, Z. Li, and Y. Liang. 2014. The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS ONE 9(11), e113782. Doi: 10.1371/journal.pone.0113782

Stefan, M., N. Munteanu, V. Stoleru, M. Mihasan, and L. Hritcu. 2013. Seed inoculation with plant growth promoting rhizobacteria enhances photosynthesis and yield of runner bean (Phaseolus coccineus L.). Sci. Hortic. 151, 22-29. Doi: 10.1016/j.scienta.2012.12.006

Turner, D.W. 1998. Ecophysiology of bananas: the generation and functioning of the leaf canopy. Acta Hortic. 490, 211-222. Doi: 10.17660/ActaHortic.1998.490.21

Ul Hassan, T. and A. Bano. 2015. The stimulatory effects of L-tryptophan and plant growth promoting rhizobacteria (PGPR) on soil health and physiology of wheat. J. Soil Sci. Plant Nutr. 15(1), 190-201. Doi: 10.4067/S0718-95162015005000016

Wang, Q., I.C. Dodd, A.A. Belimov, and F. Jiang. 2016. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Funct. Plant Biol. 43(2), 161-172. Doi: 10.1071/FP15200

Yakhin, O.I., A.A. Lubyanov, I.A. Yakhin, and P.H. Brown. 2017. Biostimulants in plant science: a global perspective. Front. Plant Sci. 7, 2049. Doi: 10.3389/fpls.2016.02049

Xie, Z., F. Song, H. Xu, H. Shao, and R. Song. 2014. Effects of silicon on photosynthetic characteristics of maize (Zea mays L.) on alluvial soil. Sci. World J. 2014, 718716. Doi: 10.1155/2014/718716

Xu, H., Y. Lu, and Z. Xie. 2016. Effects of silicon on maize photosynthesis and grain yield in black soils. Emir. J. Food Agr. 28(11), 779-785. Doi: 10.9755/ejfa.2016-06-730

Zanetti, L.V., C.R.D. Milanez, V.N. Gama, M.A.G. Aguilar, C.A.S. Souza, E. Campostrini, T.M. Ferraz, and F.A.M.M.A. Figueiredo. 2016. Leaf application of silicon in young cacao plants subjected to water deficit. Pesq. Agropec. Bras. 51(3), 215-223. Doi: 10.1590/S0100-204X2016000300003

Zhang, H., X. Xie, M.S. Kim, D.A. Kornyeyev, S. Holaday, and P.W. Paré. 2008. Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J. 56(2), 264-273. Doi: 10.1111/j.1365-313X.2008.03593.x

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 3 4 > >> 

También puede {advancedSearchLink} para este artículo.