Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Mejoramiento de la resistencia al desgaste abrasivo de la fundición al alto cromo ASTM A-532 a través de ciclos de tratamiento térmico

Resumen

Las fundiciones blancas de hierro al alto cromo son muy usadas en la minería y en la perforación de pozos petroleros, debido a su alta resistencia al desgaste, sin embargo, debido a que en el estado de colada su microestructura es austenítica, es necesario someterlas a un adecuado ciclo de tratamiento térmico. Este trabajo estudia los efectos de los diferentes medios de enfriamiento después de un tratamiento de desestabilización de la microestructura y, por ende, el efecto del grado de endurecimiento sobre el comportamiento a la abrasión de una fundición blanca al alto cromo hipoeutéctica. Los resultados muestran que a pesar de que el enfriamiento al aire, seguido por inmersión en CO2, puede reducir eficazmente la austenita retenida, esto no es suficiente para transformarla completamente en martensita. El bajo porcentaje de austenita retenida incrementa la dureza del material, pero disminuye la resistencia a la abrasión de las fundiciones al alto cromo. La mejor combinación de dureza y resistencia al desgaste se encontró en las muestras enfriadas al aire, debido al porcentaje de austenita retenida y a una moderada precipitación de carburos de cromo.

Palabras clave

HCWCI, fundiciones blancas de hierro, fundición al alto cromo, carburos de cromo, austenita, martensita

PDF (English) HTML (English)

Citas

  1. I. R. Sare, "Abrasion resistance and fracture toughness of white cast irons", Met. Technol. 6, pp. 412-419, 1979. DOI: http://dx.doi.org/10.1179/030716979803276228. DOI: https://doi.org/10.1179/030716979803276228
  2. D. Li, et al., “Phase diagram calculation of high chromium cast irons and influence of its chemical composition”, Materials & Design 30, pp. 340-345, 2009. DOI: http://dx.doi.org/10.1016/j.matdes.2008.04.061. DOI: https://doi.org/10.1016/j.matdes.2008.04.061
  3. S. K. Hann and J. D. Gates, “A transformation toughening white cast iron”, Journal of Materials Science 32, pp.1249-1259, 1997. DOI: http://dx.doi.org/10.1023/A:1018544204267. DOI: https://doi.org/10.1023/A:1018544204267
  4. H. Liu, et al., “Effects of cryogenic treatment on microstructure and abrasion resistance of CrMnB high chromium cast iron subjected to sub-critical treatment”, Mater. Sci. Eng. A, pp. 478, 324-328, 2008. DOI: http://dx.doi.org/10.1016/j.msea.2007.06.012. DOI: https://doi.org/10.1016/j.msea.2007.06.012
  5. Ö. N. Doğan, J. A. Hawk and G. L. laird II, “Solidification structure and abrasion resistance of high chromium white irons”, Metallurgical and Materials Transactions A 28A, pp.1315-1328,1997. DOI: http://dx.doi.org/10.1007/s11661-997-0267-3. DOI: https://doi.org/10.1007/s11661-997-0267-3
  6. H. Liu, et al., “Effects of deep cryogenic treatment on property of 3Cr13Mo1V1.5 high chromium cast iron”, Materials & Design 28, pp.1059-1064, 2007. DOI: http://dx.doi.org/10.1016/j.matdes.2005.09.007. DOI: https://doi.org/10.1016/j.matdes.2005.09.007
  7. A. Kootsookos and J. D. Gates, “The role of secondary carbide precipitation on the fracture toughness of a reduced carbon white iron”, Mater. Sci. Eng. A 490, pp. 313-318, 2008. DOI: http://dx.doi.org/10.1016/j.msea.2008.01.036. DOI: https://doi.org/10.1016/j.msea.2008.01.036
  8. Ș. Yașar, Investigation of wear and microstructure of turbine pallet of sanding machine, Institute of Science and Technology, Gazi University, Ankara, Turkey, 2001.
  9. C. Çetinkaya, “An investigation of the wear behaviours of white cast irons under different compositions”, Materials and Design 27, pp. 437-445, 2006. DOI: http://dx.doi.org/10.1016/j.matdes.2004.11.021. DOI: https://doi.org/10.1016/j.matdes.2004.11.021
  10. X. H. Tang, et al., “Microstructure of high (45 wt.%) chromium cast irons and their resistances to wear and corrosion”, Wear 271, pp.1426-1431, 2011. DOI: http://dx.doi.org/10.1016/j.wear.2010.11.047. DOI: https://doi.org/10.1016/j.wear.2010.11.047
  11. X. Zhi, et al., “Effect of heat treatment on microstructure and mechanical properties of a Ti-bearing hypereutectic high chromium white cast iron”, Mater. Sci. Eng. A 487, pp.171-179, 2008. DOI: http://dx.doi.org/10.1016/j.msea.2007.10.009. DOI: https://doi.org/10.1016/j.msea.2007.10.009
  12. I. R. Sare, B. K. Arnold, “The Effect of Heat Treatment on the Gouging Abrasion Resistance of Alloy White Cast Irons”, Metallurgical and Materials Transactions A 26A, pp.357-370, 1995. DOI: https://doi.org/10.1007/BF02664672
  13. A. Wiengmoon, et al., “Microstructural and crystallographical study of carbides in 30wt.%Cr cast irons”, Acta Materialia 53, pp.4143-4154, 2005. DOI: http://dx.doi.org/10.1016/j.actamat.2005.05.019. DOI: https://doi.org/10.1016/j.actamat.2005.05.019
  14. A. E. Karantzalis, A. Lekatou, E. Diavati, “Effect of destabilization heat treatments on the microstructure of high-chromium cast iron: a microscopy examination approach”, Journal of Materials Engineering and Performance 18, pp.1078-1085, 2009. DOI: http://dx.doi.org/10.1007/s11665-009-9353-6. DOI: https://doi.org/10.1007/s11665-009-9353-6
  15. R. J. Chung, et al. “Microstructure refinement of hypereutectic high Cr cast irons using hard carbide-forming elements for improved wear resistance”, Wear 301, pp. 695-706, 2013. DOI: http://dx.doi.org/10.1016/j.wear.2013.01.079. DOI: https://doi.org/10.1016/j.wear.2013.01.079
  16. A. Bedolla-Jacuinde, L. Arias and B. Hernández, “Kinetics of secondary carbides precipitation in a high-chromium white iron”, J. Mater. Eng. Perform. 12, pp. 371–382, 2003. DOI: http://dx.doi.org/10.1361/105994903770342881. DOI: https://doi.org/10.1361/105994903770342881
  17. ASTM, Standard G 65–00, Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Wheel Apparatus, Pennsylvania, U.S.A.: ASTM International, 2001.
  18. ASM, Handbook, Friction, Lubrication, and Wear Technology. Décima edición, in: A. International (Ed.) 1992.
  19. V. Dobrovolsky, et al., Machine Elements, Moscow Peace Publisher, 1976.
  20. A. Bedolla-Jacuinde, B. Hernández, and L. Béjar-Gómez, “SEM study on the M7C3 carbide nucleation during eutectic solidification of high-chromium white irons”, Zeitschrift für Metallkunde. 96, pp.1380-1385, 2005. DOI: http://dx.doi.org/10.3139/146.101188. DOI: https://doi.org/10.3139/146.101188
  21. K. A. Kibble, J. T. H. Pearce, “Influence of heat treatment on the microstructure and hardness of 19% high-chromium cast irons”, Cast Metals 6, pp. 9-15, 1993. DOI: https://doi.org/10.1080/09534962.1993.11819121
  22. ASTM, E 975–03, Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, Pennsylvania, U.S.A.: ASTM International, 2003.
  23. M.-X. Zhang, et al., “Determination of retained austenite using an X-ray texture goniometer”, Materials Characterization 45, pp. 39-49, 2000. DOI: http://dx.doi.org/10.1016/S1044-5803(00)00044-9. DOI: https://doi.org/10.1016/S1044-5803(00)00044-9
  24. M. Filipović, Ž. Kamberović, M. Korać, “The effect vanadium content and heat treatment on wear resistance and fracture toughness of Fe-Cr-C-V alloy”, Metall. Mater. Eng. 20, pp. 1-13, 2014. DOI: http://dx.doi.org/10.5937/metmateng1401001F. DOI: https://doi.org/10.5937/metmateng1401001F
  25. B. Hinckley, et al., “Investigation of the Martensitic Transformation in High- Chromium Cast Irons using Microscopy and Microanalysis”, Materials Forum 32, pp. 55-71, 2010. DOI: http://dx.doi.org/10.1017/s1431927610058423. DOI: https://doi.org/10.1017/S1431927610058423
  26. J. Wang, et al., “Effects of high temperature and cryogenic treatment on the microstructure and abrasion resistance of a high chromium cast iron”, Journal of Materials Processing Technology 209, pp. 3236-3240, 2009. DOI: http://dx.doi.org/10.1016/j.jmatprotec.2008.07.035. DOI: https://doi.org/10.1016/j.jmatprotec.2008.07.035
  27. R. Blickensderfer, J. H. Tylczek and J. Dodd, “The effect of heat treatment on spalling of Cr- Mo white cast iron”, Wear of Materials, pp.471-476, 1983.
  28. F. Marathray, R. Usseglio-Nanot, Atlas: Transformation Characteristics of Chromium and Chromium-Molybdenum White Irons, Paris: C. M. S.A. (Ed.), pp. 149-152, 1970.
  29. Ö. N. Doğan, J. A. Hawk, “Effect of carbide orientation on abrasion of high Cr white cast iron”, Wear 189, pp. 136-142, 1995. DOI: http://dx.doi.org/10.1016/0043-1648(95)06682-9. DOI: https://doi.org/10.1016/0043-1648(95)06682-9

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Artículos similares

También puede {advancedSearchLink} para este artículo.