Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Uso de la realidad aumentada, la realidad virtual y la inteligencia artificial en educación secundaria: una revisión sistemática

Resumen

El objetivo de esta revisión sistemática es obtener información frente a la implementación de tecnologías disruptivas (TD) como la realidad aumentada (AR), la realidad virtual (VR) y la inteligencia artificial (IA) en educación secundaria.  Al aplicar el protocolo prisma (2021) en las bases de datos Scopus y Taylor & Francis, se obtienen 53 documentos. Los hallazgos giran en torno a tres aspectos. Análisis bibliométrico por año y país, implementación de la AR,VR o IA y resultados obtenidos en los diversos campos del conocimiento impactados por las TD. Las intervenciones con estas tecnologías muestran una creciente tendencia en implementar la AR. La eficacia de la implementación de la AR,VR o IA generó mejoras cognitivas, emocionales y en el proceso enseñanza aprendizaje. Por otra parte, se recomienda profundizar la investigación de implementación de estas TD e integrar en los estudios las combinaciones entre tecnologías.

Palabras clave

realidad aumentada, realidad virtual, inteligencia artificial, educación secundaria

XML PDF

Biografía del autor/a

Wilson Ferney Lancheros-Bohorquez

Licenciado en Física, Magister en enseñanza de las ciencias exactas y naturales

Grace Judith Vesga-Bravo

Matemática, Doctora en Educación Matemática


Citas

  1. Álvarez-Herrero, J.-F., & Hernández-Ortega, J. (2021). Didactic itineraries with smartphones to promote environmental education and digital competence among secondary school students. Digital Education Review, 39, 319–335. https://doi.org/10.1344/DER.2021.39.319-335 DOI: https://doi.org/10.1344/der.2021.39.319-335
  2. Amores-Valencia, A., Burgos, D., & Branch-Bedoya, J. W. (2023). The Impact of Augmented Reality (AR) on the Academic Performance of High School Students. Electronics (Switzerland), 12 (10). https://doi.org/10.3390/electronics12102173 DOI: https://doi.org/10.3390/electronics12102173
  3. Arici, F., Yilmaz, R. M., & Yilmaz, M. (2021). Affordances of augmented reality technology for science education: Views of secondary school students and science teachers. Human Behavior and Emerging Technologies, 3 (5), 1153–1171. https://doi.org/10.1002/hbe2.310 DOI: https://doi.org/10.1002/hbe2.310
  4. Bai, Y. (2022). Strategies for Improving the Quality of Music Teaching in Primary and Secondary Schools in the Context of Artificial Intelligence and Evaluation. Security and Communication Networks, 2022. https://doi.org/10.1155/2022/4680905 DOI: https://doi.org/10.1155/2022/4680905
  5. Ban Hassan Majeed, & ALRikabi, H. TH. S. (2022). Effect of Augmented Reality Technology on Spatial Intelligence among High School Students. International Journal of Emerging Technologies in Learning (IJET), 17 (24), 131–143. https://doi.org/10.3991/ijet.v17i24.35977 DOI: https://doi.org/10.3991/ijet.v17i24.35977
  6. Bosmos, F., Tzallas, A. T., Tsipouras, M. G., Glavas, E., & Giannakeas, N. (2023). Virtual and Augmented Experience in Virtual Learning Tours †. Information (Switzerland), 14 (5). https://doi.org/10.3390/info14050294 DOI: https://doi.org/10.3390/info14050294
  7. Bozkurt, A., Karadeniz, A., Baneres, D., Guerrero-Roldán, A. E., & Rodríguez, M. E. (2021). Artificial Intelligence and Reflections from Educational Landscape: A Review of AI Studies in Half a Century. Sustainability, 13 (2), 800. https://doi.org/10.3390/su13020800 DOI: https://doi.org/10.3390/su13020800
  8. Brotherhood, L., & Delalibera, B. R. (2020). Minding the gap between schools and universities. Journal of Economic Dynamics and Control, 120, 104010. https://doi.org/10.1016/j.jedc.2020.104010 DOI: https://doi.org/10.1016/j.jedc.2020.104010
  9. Bursali, H., & Yilmaz, R. M. (2019). Effect of augmented reality applications on secondary school students’ reading comprehension and learning permanency. Computers in Human Behavior, 95, 126–135. https://doi.org/10.1016/j.chb.2019.01.035 DOI: https://doi.org/10.1016/j.chb.2019.01.035
  10. Cabero-Almenara, J., Barroso-Osuna, J., Llorente-Cejudo, C., & Fernández-Martínez, M. del M. (2019). Educational Uses of Augmented Reality (AR): Experiences in Educational Science. Sustainability, 11 (18), 4990. https://doi.org/10.3390/su11184990 DOI: https://doi.org/10.3390/su11184990
  11. Cai, S., Liu, E., Shen, Y., Liu, C., Li, S., & Shen, Y. (2020). Probability learning in mathematics using augmented reality: impact on student’s learning gains and attitudes. Interactive Learning Environments, 28 (5), 560–573. https://doi.org/10.1080/10494820.2019.1696839 DOI: https://doi.org/10.1080/10494820.2019.1696839
  12. Cheng, Y.-W., Wang, Y., Cheng, I.-L., & Chen, N.-S. (2019). An in-depth analysis of the interaction transitions in a collaborative Augmented Reality-based mathematic game. Interactive Learning Environments, 27 (5–6), 782–796. https://doi.org/10.1080/10494820.2019.1610448 DOI: https://doi.org/10.1080/10494820.2019.1610448
  13. Chng, E., Tan, A. L., & Tan, S. C. (2023). Examining the Use of Emerging Technologies in Schools: a Review of Artificial Intelligence and Immersive Technologies in STEM Education. Journal for STEM Education Research. https://doi.org/10.1007/s41979-023-00092-y DOI: https://doi.org/10.1007/s41979-023-00092-y
  14. Christensen, C. M., & Dillon, K. (2020). Disruption 2020: An Interview With Clayton M. Christensen. MIT Sloan Management Review, 21–26. DOI: https://doi.org/10.7551/mitpress/13768.003.0004
  15. Christopoulos, A., Pellas, N., Bin Qushem, U., & Laakso, M. (2023). Comparing the effectiveness of video and stereoscopic 360° virtual reality‐supported instruction in high school biology courses. British Journal of Educational Technology, 54 (4), 987–1005. https://doi.org/10.1111/bjet.13306 DOI: https://doi.org/10.1111/bjet.13306
  16. Concari, S. (2014). Tecnologías emergentes ¿Cuáles usamos? Latin American Journal of Physics Education., 494–503.
  17. Dai, C. P., & Ke, F. (2022). Educational applications of artificial intelligence in simulation-based learning: A systematic mapping review. Computers and Education: Artificial Intelligence, 3, 100087. https://doi.org/10.1016/J.CAEAI.2022.100087 DOI: https://doi.org/10.1016/j.caeai.2022.100087
  18. Daineko, Y., Ipalakova, M., Tsoy, D., Bolatov, Z., Baurzhan, Z., & Yelgondy, Y. (2020). Augmented and virtual reality for physics: Experience of Kazakhstan secondary educational institutions. Computer Applications in Engineering Education, 28 (5), 1220–1231. https://doi.org/10.1002/cae.22297 DOI: https://doi.org/10.1002/cae.22297
  19. Daniele, M. (2022). Using geo browsers and VR platforms to empower students’ awareness of sustainability issues. J-READING (Journal of Research and Didactics in Geography), 1.
  20. Deveci-Topal, A., Dilek-Eren, C., & Kolburan-Geçer, A. (2021). Chatbot application in a 5th grade science course. Education and Information Technologies, 26 (5), 6241–6265. https://doi.org/10.1007/s10639-021-10627-8 DOI: https://doi.org/10.1007/s10639-021-10627-8
  21. Dimitriadou, E., & Lanitis, A. (2023). A critical evaluation, challenges, and future perspectives of using artificial intelligence and emerging technologies in smart classrooms. Smart Learning Environments, 10 (1), 12. https://doi.org/10.1186/s40561-023-00231-3 DOI: https://doi.org/10.1186/s40561-023-00231-3
  22. Feng, L., & Zhang, W. (2022). Design and Implementation of Computer-Aided Art Teaching System based on Virtual Reality. Computer-Aided Design and Applications, 20, 56–65. https://doi.org/10.14733/CADAPS.2023.S1.56-65 DOI: https://doi.org/10.14733/cadaps.2023.S1.56-65
  23. Gamboa-Ramos, M., Gómez-Noa, R., Iparraguirre-Villanueva, O., Cabanillas-Carbonell, M., & Salazar, J. L. H. (2021). Mobile Application with Augmented Reality to Improve Learning in Science and Technology. International Journal of Advanced Computer Science and Applications, 12 (10), 487–492. https://doi.org/10.14569/IJACSA.2021.0121055 DOI: https://doi.org/10.14569/IJACSA.2021.0121055
  24. Gnidovec, T., Žemlja, M., Dolenec, A., & Torkar, G. (2020). Using Augmented Reality and the Structure–Behavior–Function Model to Teach Lower Secondary School Students about the Human Circulatory System. Journal of Science Education and Technology, 29 (6), 774–784. https://doi.org/10.1007/s10956-020-09850-8 DOI: https://doi.org/10.1007/s10956-020-09850-8
  25. Gregorčič, T., & Torkar, G. (2022). Using the structure-behavior-function model in conjunction with augmented reality helps students understand the complexity of the circulatory system. Advances in Physiology Education, 46 (3), 367–374. https://doi.org/10.1152/advan.00015.2022 DOI: https://doi.org/10.1152/advan.00015.2022
  26. Habiddin, H., Ashar, M., Hamdan, A., & Nasir, K. R. (2022). Digital Comic Media for Teaching Secondary School Science. International Journal of Interactive Mobile Technologies, 16 (3), 159–166. https://doi.org/10.3991/IJIM.V16I03.28967 DOI: https://doi.org/10.3991/ijim.v16i03.28967
  27. Husamah, H., Suwono, H., Nur, H., & Dharmawan, A. (2022). Sustainable development research in Eurasia Journal of Mathematics, Science and Technology Education: A systematic literature review. Eurasia Journal of Mathematics, Science and Technology Education, 18 (5). https://doi.org/10.29333/ejmste/11965 DOI: https://doi.org/10.29333/ejmste/11965
  28. İbili, E., Çat, M., Resnyansky, D., Şahin, S., & Billinghurst, M. (2020). An assessment of geometry teaching supported with augmented reality teaching materials to enhance students’ 3D geometry thinking skills. International Journal of Mathematical Education in Science and Technology, 51 (2), 224–246. https://doi.org/10.1080/0020739X.2019.1583382 DOI: https://doi.org/10.1080/0020739X.2019.1583382
  29. Ingkavara, T., Panjaburee, P., Srisawasdi, N., & Sajjapanroj, S. (2022). The use of a personalized learning approach to implementing self-regulated online learning. Computers and Education: Artificial Intelligence, 3. https://doi.org/10.1016/j.caeai.2022.100086 DOI: https://doi.org/10.1016/j.caeai.2022.100086
  30. Jesionkowska, J., Wild, F., & Deval, Y. (2020). Active learning augmented reality for steam education—a case study. Education Sciences, 10 (8), 1–15. https://doi.org/10.3390/educsci10080198 DOI: https://doi.org/10.3390/educsci10080198
  31. Jong, M. S.-Y., Tsai, C.-C., Xie, H., & Kwan-Kit Wong, F. (2020). Integrating interactive learner-immersed video-based virtual reality into learning and teaching of physical geography. British Journal of Educational Technology, 51 (6), 2063–2078. https://doi.org/10.1111/bjet.12947 DOI: https://doi.org/10.1111/bjet.12947
  32. Kececi, G., Yildirim, P., & Zengin, F. K. (2021). Determining the Effect of Science Teaching Using Mobile Augmented Reality Application on the Secondary School Students’ Attitudes of toward Science and Technology and Academic Achievement. Science Education International, 32 (2), 137–148. https://doi.org/10.33828/sei.v32.i2.7 DOI: https://doi.org/10.33828/sei.v32.i2.7
  33. Koparan, T., Dinar, H., Koparan, E. T., & Haldan, Z. S. (2023). Integrating augmented reality into mathematics teaching and learning and examining its effectiveness. Thinking Skills and Creativity, 47. https://doi.org/10.1016/j.tsc.2023.101245 DOI: https://doi.org/10.1016/j.tsc.2023.101245
  34. Lee, D., Kim, H.-H., & Sung, S.-H. (2023). Development research on an AI English learning support system to facilitate learner-generated-context-based learning. Educational Technology Research and Development, 71 (2), 629–666. https://doi.org/10.1007/s11423-022-10172-2 DOI: https://doi.org/10.1007/s11423-022-10172-2
  35. Lin, C.-H., & Sumardani, D. (2023). Transitioning to virtual reality learning in 5E learning model: pedagogical practices for science learning. Interactive Learning Environments, 1–15. https://doi.org/10.1080/10494820.2022.2160468 DOI: https://doi.org/10.1080/10494820.2022.2160468
  36. Lizcano-Sánchez, M., Gonzáles-Guevara, L. F., & García-Galván, J. (2023). Recursos y herramientas para la innovación del aprendizaje en la era digital. Revista Ciencia & Sociedad, 3 (1), 68–76.
  37. Lorenzo, N., Gallon, R., Palau, R., & Mogas, J. (2021). New Objectives for Smart Classrooms from Industry 4.0. Technology, Knowledge and Learning, 26 (4), 719–731. https://doi.org/10.1007/s10758-021-09527-0 DOI: https://doi.org/10.1007/s10758-021-09527-0
  38. Mahanan, M. S., Ibrahim, N. H., Surif, J., & Nee, C. K. (2021). AR Module for Learning Changes of Matter in Chemistry. International Journal of Interactive Mobile Technologies, 15 (23), 72–88. https://doi.org/10.3991/ijim.v15i23.27343 DOI: https://doi.org/10.3991/ijim.v15i23.27343
  39. Malakul, S., & Park, I. (2023). The effects of using an auto-subtitle system in educational videos to facilitate learning for secondary school students: learning comprehension, cognitive load, and satisfaction. Smart Learning Environments, 10 (1). https://doi.org/10.1186/s40561-023-00224-2 DOI: https://doi.org/10.1186/s40561-023-00224-2
  40. Martínez-Villalobos, G., & Ruiz-Rodríguez, D. (2022). Impacto del aula invertida con tecnologías emergentes en un curso del ciclo básico de ingeniería. Revista Mexicana de Investigación Educativa, 27 (94), 971–997.
  41. Mat Zain, N. H., Ismail, I., Noh, N. A. M., Yasin, A. M., Othman, Z., & Che Yahaya, S. N. A. (2021). Virtual learning for human respiratory system via non-immersive VR (V-HURESYS): An evaluation. Annals of Emerging Technologies in Computing, 5(Special is), 86–93. https://doi.org/10.33166/AETiC.2021.05.010 DOI: https://doi.org/10.33166/AETiC.2021.05.010
  42. Ogata, H., Flanagan, B., Takami, K., Dai, Y., Nakamoto, R., & Takii, K. (2024). EXAIT: Educational eXplainable Artificial Intelligent Tools for personalized learning. Research and Practice in Technology Enhanced Learning, 19. https://doi.org/10.58459/rptel.2024.19019 DOI: https://doi.org/10.58459/rptel.2024.19019
  43. Oliveira, K. K. S., & Souza, R. A. C. (2020). Habilitadores da transformação digital em direção à Educação 4.0. RENOTE, 18 (1). DOI: https://doi.org/10.22456/1679-1916.106012
  44. Özerbaş, D. S. (2019). The effect of marker-based augmented reality (MBAR) applications on academic achievement and permanence. Universal Journal of Educational Research, 7 (9), 1926–1932. https://doi.org/10.13189/ujer.2019.070911 DOI: https://doi.org/10.13189/ujer.2019.070911
  45. Özyalçın, B., & Avcı, F. (2022). Let’s get to learn the particulate structure of matter with augmented reality!: a jigsaw IV technique lesson plan. Science Activities, 59 (2), 68–83. https://doi.org/10.1080/00368121.2022.2056112 DOI: https://doi.org/10.1080/00368121.2022.2056112
  46. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906. https://doi.org/10.1016/j.ijsu.2021.105906 DOI: https://doi.org/10.1016/j.ijsu.2021.105906
  47. Papakostas, C., Troussas, C., Krouska, A., & Sgouropoulou, C. (2023). Exploring Users’ Behavioral Intention to Adopt Mobile Augmented Reality in Education through an Extended Technology Acceptance Model. International Journal of Human-Computer Interaction, 39 (6), 1294–1302. https://doi.org/10.1080/10447318.2022.2062551 DOI: https://doi.org/10.1080/10447318.2022.2062551
  48. Patiño, A., Ramírez-Montoya, M. S., & Buenestado-Fernández, M. (2023). Active learning and education 4.0 for complex thinking training: analysis of two case studies in open education. Smart Learning Environments, 10 (1), 8. https://doi.org/10.1186/s40561-023-00229-x DOI: https://doi.org/10.1186/s40561-023-00229-x
  49. Peeters, H., Habig, S., & Fechner, S. (2023). Does Augmented Reality Help to Understand Chemical Phenomena during Hands-On Experiments?–Implications for Cognitive Load and Learning. Multimodal Technologies and Interaction, 7 (2). https://doi.org/10.3390/mti7020009 DOI: https://doi.org/10.3390/mti7020009
  50. Petrov, P. D., & Atanasova, T. V. (2020). The Effect of augmented reality on students’ learning performance in stem education. Information (Switzerland), 11 (4). https://doi.org/10.3390/INFO11040209 DOI: https://doi.org/10.3390/info11040209
  51. Poçan, S., Altay, B., & Yaşaroğlu, C. (2023). The Effects of Mobile Technology on Learning Performance and Motivation in Mathematics Education. Education and Information Technologies, 28 (1), 683–712. https://doi.org/10.1007/s10639-022-11166-6 DOI: https://doi.org/10.1007/s10639-022-11166-6
  52. Popenici, S. A. D., & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12 (1), 22. https://doi.org/10.1186/s41039-017-0062-8 DOI: https://doi.org/10.1186/s41039-017-0062-8
  53. Pratama, H., Azman, M. N. A., Kenzhaliyev, O. B., Wijaya, H., & Kassymova, G. K. (2021). Application of augmented reality technology as an interactive learning medium in geography subjects. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 4 (448), 21–29. https://doi.org/10.32014/2021.2518-170X.77 DOI: https://doi.org/10.32014/2021.2518-170X.77
  54. Priya, S., Bhadra, S., Chimalakonda, S., & Venigalla, A. S. M. (2022). ML-Quest : a game for introducing machine learning concepts to K-12 students. Interactive Learning Environments, 1–16. https://doi.org/10.1080/10494820.2022.2084115 DOI: https://doi.org/10.1080/10494820.2022.2084115
  55. Rasheed, G., Khan, M., Malik, N., & Akhunzada, A. (2021). Measuring learnability through virtual reality laboratory application: A user study. Sustainability (Switzerland), 13 (19). https://doi.org/10.3390/su131910812 DOI: https://doi.org/10.3390/su131910812
  56. Remolar, I., Rebollo, C., & Fernández-Moyano, J. A. (2021). Learning History Using Virtual and Augmented Reality. Computers, 10 (11), 146. https://doi.org/10.3390/computers10110146 DOI: https://doi.org/10.3390/computers10110146
  57. Sato, S., & Kageto, M. (2018). The Use of 360-Degree Movies to Facilitate Students’ Reflection on Learning Experiences. 2018 International Symposium on Educational Technology (ISET), 266–267. https://doi.org/10.1109/ISET.2018.00066 DOI: https://doi.org/10.1109/ISET.2018.00066
  58. Saundarajan, K., Osman, S., Daud, M. F., Abu, M. S., Pairan, M. R., & Kumar, J. A. (2020). Learning algebra using augmented reality. International Journal of Emerging Technologies in Learning, 15(16), 123–133. https://doi.org/10.3991/ijet.v15i16.10540 DOI: https://doi.org/10.3991/ijet.v15i16.10540
  59. Saura, G., Cancela, E., & Adell, J. (2022). New Keynesianism or smart austerity? Digital technologies and educational privatization post-COVID-19. Education Policy Analysis Archives, 30. https://doi.org/10.14507/epaa.30.6926 DOI: https://doi.org/10.14507/epaa.30.6926
  60. Schmidt, J. T., & Tang, M. (2020). Digitalization in Education: Challenges, Trends and Transformative Potential. In Führen und Managen in der digitalen Transformation, 287–312. Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-28670-5_16 DOI: https://doi.org/10.1007/978-3-658-28670-5_16
  61. Shu, Y., & Huang, T.-C. (2021). Identifying the potential roles of virtual reality and STEM in Maker education. The Journal of Educational Research, 114 (2), 108–118. https://doi.org/10.1080/00220671.2021.1887067 DOI: https://doi.org/10.1080/00220671.2021.1887067
  62. Şimşek, B., & Direkçi, B. (2023). The effects of augmented reality storybooks on student’s reading comprehension. British Journal of Educational Technology, 54 (3), 754–772. https://doi.org/10.1111/bjet.13293 DOI: https://doi.org/10.1111/bjet.13293
  63. Stojanović, D., Bogdanović, Z., Petrović, L., Mitrović, S., & Labus, A. (2023). Empowering learning process in secondary education using pervasive technologies. Interactive Learning Environments, 31 (2), 779–792. https://doi.org/10.1080/10494820.2020.1806886 DOI: https://doi.org/10.1080/10494820.2020.1806886
  64. Stojšić, I., Ostojić, N., & Stanisavljević, J. (2022). Students’ Acceptance of Mobile Augmented Reality Applications in Primary and Secondary Biology Education. International Journal of Cognitive Research in Science, Engineering and Education, 10 (3), 129–138. https://doi.org/10.23947/2334-8496-2022-10-3-129-138 DOI: https://doi.org/10.23947/2334-8496-2022-10-3-129-138
  65. Stolzenberger, C., Frank, F., & Trefzger, T. (2022). Experiments for students with built-in theory: ’PUMA: Spannungslabor’-an augmented reality app for studying electricity. Physics Education, 57 (4). https://doi.org/10.1088/1361-6552/ac60ae DOI: https://doi.org/10.1088/1361-6552/ac60ae
  66. Suhaimi, H., Aziz, N. N., Mior Ibrahim, E. N., & Wan Mohd Isa, W. A. R. (2023). Technology Acceptance in Learning History Subject Using Augmented Reality Towards Smart Mobile Learning Environment: Case in Malaysia. Journal of Automation, Mobile Robotics and Intelligent Systems, 16 (2), 20–29. https://doi.org/10.14313/jamris-2-2022-12 DOI: https://doi.org/10.14313/JAMRIS/2-2022/12
  67. Toktamysov, S., Alwaely, S. A., & Gallyamova, Z. (2023). Digital technologies in history training: the impact on students` academic performance. Education and Information Technologies, 28 (2), 2173–2186. https://doi.org/10.1007/s10639-022-11210-5 DOI: https://doi.org/10.1007/s10639-022-11210-5
  68. Villa-Guardiola, V. J., Romero-González, Z., & Hernández-Ramírez, S. L. (2022). Evaluación del impacto del Covid-19 en la educación básica de México y Colombia. Revista de Investigación, Desarrollo e Innovación, 12 (2), 229–238. https://doi.org/10.19053/20278306.v12.n2.2022.15262 DOI: https://doi.org/10.19053/20278306.v12.n2.2022.15262
  69. Volioti, C., Keramopoulos, E., Sapounidis, T., Melisidis, K., Zafeiropoulou, M., Sotiriou, C., & Spiridis, V. (2022). Using Augmented Reality in K-12 Education: An Indicative Platform for Teaching Physics. Information (Switzerland), 13 (7). https://doi.org/10.3390/info13070336 DOI: https://doi.org/10.3390/info13070336
  70. Wallgrün, J. O., Chang, J. S.-K., Zhao, J., Trenham, P., Sajjadi, P., Simpson, M., & Klippel, A. (2022). Place-based education through immersive virtual experiences — preparing biology students for the field. Journal of Biological Education, 1–24. https://doi.org/10.1080/00219266.2022.2067580 DOI: https://doi.org/10.1080/00219266.2022.2067580
  71. Webb, M., Tracey, M., Harwin, W., Tokatli, O., Hwang, F., Johnson, R., Barrett, N., & Jones, C. (2022). Haptic-enabled collaborative learning in virtual reality for schools. Education and Information Technologies, 27 (1), 937–960. https://doi.org/10.1007/s10639-021-10639-4 DOI: https://doi.org/10.1007/s10639-021-10639-4
  72. Xiao, J., Cao, M., Li, X., & Hansen, P. (2020). Assessing the effectiveness of the augmented reality courseware for starry sky exploration. International Journal of Distance Education Technologies, 18 (1), 19–35. https://doi.org/10.4018/IJDET.2020010102 DOI: https://doi.org/10.4018/IJDET.2020010102
  73. Zhang, W., Xiao, S., & Fu, W. (2023). Can “Smart Homework” Achieve the Goal of Chinese “Double Reduction” Policy to Reduce Burden and Improve Quality? The Positive and Negative Effects of “Smart Homework” on Students. Sustainability, 15 (12), 9759. https://doi.org/10.3390/su15129759 DOI: https://doi.org/10.3390/su15129759

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

<< < 1 2 3 4 5 > >> 

También puede {advancedSearchLink} para este artículo.