Presence of contamination by As Cd, As, Pb, Se, and Hg in coals of the Cundiboyacense area, Colombia
Abstract
Coals of Cundiboyacense area were studied in order to determine their presence and quantify of content of contaminants such as cadmium (Cd), arsenic (As), lead (Pb), selenium (Se), and mercury (Hg), which are compared with Clarke index for coals of the same rank. Coal samples were taken from active mining fronts and are analyzed by proximate analysis, petrographic and inductively coupled plasma mass spectrometry (ICP-MS). The results show that analyzed samples contained metals such as Pb (15.5 mg•kg-1), Se (16.05 mg•kg-1), Cd (0.55 mg•kg-1) and As (16.05 mg•kg-1) above the world average for coal of the same rank and higher concentrations than the carboniferous area of northern Colombia, the Hg content is low (< 0.08 mg•kg-1). The content of these elements generates environmental concern. According to the Environmental Protection Agency of US (EPA) the maximum allowed for Se, Pb, and Cd is 0.05 mg•kg-1(ppm). It is suggested that conducting specific studies that allow prefetching and / or use of coals.
Keywords
pollutants, petrographic characteristics, proximate analysis, coal, Cundinamarca, Boyacá.
Author Biography
Olga Patricia Gómez-Rojas
Ninguna
References
- Brownfield, M.E., Affolter, R.H., Cathcart, J.D., Johnson, S.Y., Brownfield, I.K., & Rice, C.A. (2005). Geologic setting and characterization of coals and the modes of occurrence of selected elements from the Franklin coal zone, Puget Group, John Henry No. 1 mine, King County, Washington, USA. International Journal Coal Geology, 63 (3–4), 247–275. doi:10.1016/j.coal.2005.03.021
- Chen, Z., Liu, Y., Qin, P., Zhang, B., Lester, L., Chen, C., & Guo, Y. (2015). Environmental externality of coal use in China : Welfare effect and tax regulation. Applied Energy, 156, 16–31. doi:10.1016/j.apenergy.2015.06.066
- Cutruneo, C. M. N. L., Oliveira, M. L. S., Ward, M. L. S., Hower, J. C., De Brum, I. A. S., Sampaio, C. H., Kautzmann, R. M., Taffarel, S. R., Teixeira, E. C., & Silva, L. F. O. (2014). A mineralogical and geochemical study of three Brazilian coal cleaning rejects : Demonstration of electron beam applications. International Journal of Coal Geology, 130, 33–52. doi:10.1016/j.coal.2014.05.009
- Dai, S., Chou, C., Yue, M., Luo, K., & Ren, D. (2005). Mineralogy and geochemistry of a Late Permian coal in the Dafang Coalfield , Guizhou , China : influence from siliceous and iron-rich calcic hydrothermal fluids. International Journal Coal Geology, 61, 241–258. doi:10.1016/j.coal.2004.09.002
- Dai, S., Ren, D., Tang, Y., Yue, M., & Hao, L. (2005). Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. International Journal of Coal Geology, 61 (1–2), 119–137. doi:10.1016/j.coal.2004.07.003
- Dai, S., Wang, X., Seredin, V. V., Hower, J. C., Ward, C. R., O’Keefe, J. M. K., Huang, W., Li, T., Li, X., Liu, H., Xue, W., & Zhao, L. (2012). Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. International Journal of Coal Geology, 90–91, 72–99. doi:10.1016/j.coal.2011.10.012
- Diehl, S. F., Goldhaber, M. B., Koenig, A. E., Lowers, H. A., & Ruppert, L. F. (2012). Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals : Evidence for multiple episodes of pyrite formation. International Journal of Coal Geology, 94, 238–249. doi:10.1016/j.coal.2012.01.015
- E.U.S. Environmental Protection Agency [EPA]. (2015). Policy assessment for the review of the lead national ambient air quality standards. Recuperado de: https://nepis.epa.gov/Exe/ZyNET.exe/P100ITJD.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2011+Thru+2015&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C11thru15%5CTxt%5C00000010%5CP100ITJD.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
- Fu, B., Liu, G., Liu, Y., Cheng, S., Qi, C., & Sun, R. (2016). Coal quality characterization and its relationship with geological process of the Early Permian Huainan coal deposits, southern North China. Journal of Geochemical Exploration, 166, 33–44. doi:10.1016/j.gexplo.2016.04.002
- Jongwana, L.T., & Crouch, A.M. (2012). Mercury speciation in South African coal. Fuel, 94, 234–239. doi:10.1016/j.fuel.2011.09.033
- Ketris, M. P., & Yudovich, Y. E. (2009). Estimations of clarkes for carbonaceous biolithes : World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78 (2), 135–148. doi:10.1016/j.coal.2009.01.002
- Kostova, I., Vassileva, C., Dai, C., Hower, J.C., & Apostolova, D. (2013). Influence of surface area properties on mercury capture behaviour of coal fly ashes from some Bulgarian power plants. International Journal of Coal Geology, 116–117, 227–235. doi:10.1016/j.coal.2013.03.008
- Lachas, H., Richaud, R., Herod, A.A., Dugwell, D.R. Kandiyoti, R., & Jarvis, K. E. (1999). Determination of 17 trace elements in coal and ash reference materials by ICP-MS applied to milligram sample sizes. Analyst, 124 (2), 177–184. doi: 10.1039/A807849A
- Laus, R., Geremias, R., Vasconcelos, H. L., Laranjeira, M. C. M., & Fávere, V. T. (2007). Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres. Journal Hazardous Materials, 149 (2), 471–474. doi:10.1016/j.jhazmat.2007.04.012
- Li, J., Zhuang, X., & Querol, X. (2011). Trace element affinities in two high-Ge coals from China. Fuel, 90 (1), 240–247. doi:10.1016/j.fuel.2010.08.011
- Li, J., Zhuang, X., Querol, X., Font, O., Izquierdo, M. & Wang, M. (2014). New data on mineralogy and geochemistry of high-Ge coals in the Yimin coalfield, Inner Mongolia, China. International Journal of Coal Geology, 125, 10–21. doi:10.1016/j.coal.2014.01.006
- Liu, G., Zheng, L., Zhang, Y., Qi, C., Chen, Y. & Peng, Z. (2007). Distribution and mode of occurrence of As, Hg and Se and Sulfur in coal Seam 3 of the Shanxi Formation,Yanzhou Coalfield, China. International Journal of Coal Geology, 71 (2–3), 371–385. doi:10.1016/j.coal.2006.12.005
- Liu, J., Yang, Z., Yan, X., Ji, D., Yang, Y., & Hu, L. (2015). Modes of occurrence of highly-elevated trace elements in superhigh-organic-sulfur coals. Fuel, 156, 190–197. doi:10.1016/j.fuel.2015.04.034
- Martínez-Bernal, M. S. (2013). Determinación de la productividad y competitividad de la pequeña minería del distrito minero del norte de Boyacá. Revista de Investigación, Desarrollo e Innovación, 3 (2), 72-86. doi: 10.19053/20278306.2168
- Martínez-Ovalle, S., Reyes-Caballero, F., & González-Puin, L.X. (2013). Protección radiológica a trabajadores y público en instalaciones que operan radioisótopos industriales. Revista de Investigación, Desarrollo e Innovación, 3 (2), 120-124. doi: 10.19053/20278306.2166
- Morales, W., & Carmona, I. (2007). Estudio de algunos elementos traza en carbones de la cuenca Cesar – Ranchería, Colombia. Boletín ciencias la tierra, 20, 75–87. Recuperado de http://www.revistas.unal.edu.co/index.php/rbct/article/view/728
- Ohki, A., Taira, M., Hirakawa, S., Haraguchi, K., Kanechika, F., Nakajima, T., & Takanashi, H. (2014). Determination of mercury in various coals from different countries by heat-vaporization atomic absorption spectrometry: Influence of particle size distribution of coal. Microchemical Journal, 114, 119–124. doi:10.1016/j.microc.2013.12.012
- Saha, D., Chakravarty, S., Shome, D., Basariya, M. R., Kumari, A., Kumar, A., Chatterjee, D., Adhikari, J. & Chatterjee, D. (2016). Distribution and affinity of trace elements in Samaleswari coal, Eastern India. Fuel, 181, 376–388. doi:10.1016/j.fuel.2016.04.134
- Seredin, V. V., & Dai, S. (2012). Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94, 67–93. doi:10.1016/j.coal.2011.11.001
- Seredin, V.V. (2012). From coal science to metal production and environmental protection : A new story of success. International Journal of Coal Geology, 90–91, 1–3. doi:10.1016/j.coal.2011.11.006
- Seredin, V.V., & Finkelman, R.B. (2008). Metalliferous coals: A review of the main genetic and geochemical types. International Journal of Coal Geology, 76 (4), 253–289. doi:10.1016/j.coal.2008.07.016
- Seredin, V.V., Dai, S., Sun, Y., & Chekryzhov, I.Y. (2013). Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Applied Geochemistry, 31, 1–11. doi:10.1016/j.apgeochem.2013.01.009
- Stanislav, C. G. V., Vassilev, V., & Eskenazy, G.M. (2001). Behaviour of elements and minerals during preparation and combustion of the Pernik coal, Bulgaria. Fuel Processing Technology, 72 (2), 103-129. doi:10.1016/S0378-3820(01)00186-2
- Unidad de Planeación Minero-Energética [UPME]. (2005). La cadena del carbón. El carbón colombiano fuente de energía para el mundo. Recuperado de: http://www.upme.gov.co/Docs/Cadena_carbon.pdf
- Yoshiie, Y., Taya, Y., Ichiyanagi, T., Ueki, Y, & Naruse, I. (2013). Emissions of particles and trace elements from coal gasification. Fuel, 108, 67–72. doi:10.1016/j.fuel.2011.06.011
- Yuepeng, P., Tian, S., Xingru, L., Sun, Y., Li, Y., Wentworth, G. R., & Wang, Y. (2015). Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions. Science of Total Environment, 537, 9–22. doi: 10.1016/j.scitotenv.2015.07.060
- Zhang, J., Ren, D., Zhu, Y., & Chou. (2004). Mineral matter and potentially hazardous trace elements in coals from Qianxi Fault Depression Area in southwestern Guizhou , China. International Journal of Coal Geology, 57, 49–61. doi:10.1016/j.coal.2003.07.001
- Brownfield, M.E., Affolter, R.H., Cathcart, J.D., Johnson, S.Y., Brownfield, I.K., & Rice, C.A. (2005). Geologic setting and characterization of coals and the modes of occurrence of selected elements from the Franklin coal zone, Puget Group, John Henry No. 1 mine, King County, Washington, USA. International Journal Coal Geology, 63 (3–4), 247–275. doi:10.1016/j.coal.2005.03.021 DOI: https://doi.org/10.1016/j.coal.2005.03.021
- Chen, Z., Liu, Y., Qin, P., Zhang, B., Lester, L., Chen, C., & Guo, Y. (2015). Environmental externality of coal use in China : Welfare effect and tax regulation. Applied Energy, 156, 16–31. doi:10.1016/j.apenergy.2015.06.066 DOI: https://doi.org/10.1016/j.apenergy.2015.06.066
- Cutruneo, C. M. N. L., Oliveira, M. L. S., Ward, M. L. S., Hower, J. C., De Brum, I. A. S., Sampaio, C. H., Kautzmann, R. M., Taffarel, S. R., Teixeira, E. C., & Silva, L. F. O. (2014). A mineralogical and geochemical study of three Brazilian coal cleaning rejects : Demonstration of electron beam applications. International Journal of Coal Geology, 130, 33–52. doi:10.1016/j.coal.2014.05.009 DOI: https://doi.org/10.1016/j.coal.2014.05.009
- Dai, S., Chou, C., Yue, M., Luo, K., & Ren, D. (2005). Mineralogy and geochemistry of a Late Permian coal in the Dafang Coalfield , Guizhou , China : influence from siliceous and iron-rich calcic hydrothermal fluids. International Journal Coal Geology, 61, 241–258. doi:10.1016/j.coal.2004.09.002 DOI: https://doi.org/10.1016/j.coal.2004.09.002
- Dai, S., Ren, D., Tang, Y., Yue, M., & Hao, L. (2005). Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. International Journal of Coal Geology, 61 (1–2), 119–137. doi:10.1016/j.coal.2004.07.003 DOI: https://doi.org/10.1016/j.coal.2004.07.003
- Dai, S., Wang, X., Seredin, V. V., Hower, J. C., Ward, C. R., O’Keefe, J. M. K., Huang, W., Li, T., Li, X., Liu, H., Xue, W., & Zhao, L. (2012). Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. International Journal of Coal Geology, 90–91, 72–99. doi:10.1016/j.coal.2011.10.012 DOI: https://doi.org/10.1016/j.coal.2011.10.012
- Diehl, S. F., Goldhaber, M. B., Koenig, A. E., Lowers, H. A., & Ruppert, L. F. (2012). Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals : Evidence for multiple episodes of pyrite formation. International Journal of Coal Geology, 94, 238–249. doi:10.1016/j.coal.2012.01.015 DOI: https://doi.org/10.1016/j.coal.2012.01.015
- E.U.S. Environmental Protection Agency [EPA]. (2015). Policy assessment for the review of the lead national ambient air quality standards. Recuperado de: https://nepis.epa.gov/Exe/ZyNET.exe/P100ITJD.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2011+Thru+2015&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C11thru15%5CTxt%5C00000010%5CP100ITJD.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
- Fu, B., Liu, G., Liu, Y., Cheng, S., Qi, C., & Sun, R. (2016). Coal quality characterization and its relationship with geological process of the Early Permian Huainan coal deposits, southern North China. Journal of Geochemical Exploration, 166, 33–44. doi:10.1016/j.gexplo.2016.04.002 DOI: https://doi.org/10.1016/j.gexplo.2016.04.002
- Jongwana, L.T., & Crouch, A.M. (2012). Mercury speciation in South African coal. Fuel, 94, 234–239. doi:10.1016/j.fuel.2011.09.033 DOI: https://doi.org/10.1016/j.fuel.2011.09.033
- Ketris, M. P., & Yudovich, Y. E. (2009). Estimations of clarkes for carbonaceous biolithes : World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78 (2), 135–148. doi:10.1016/j.coal.2009.01.002 DOI: https://doi.org/10.1016/j.coal.2009.01.002
- Kostova, I., Vassileva, C., Dai, C., Hower, J.C., & Apostolova, D. (2013). Influence of surface area properties on mercury capture behaviour of coal fly ashes from some Bulgarian power plants. International Journal of Coal Geology, 116–117, 227–235. doi:10.1016/j.coal.2013.03.008 DOI: https://doi.org/10.1016/j.coal.2013.03.008
- Lachas, H., Richaud, R., Herod, A.A., Dugwell, D.R. Kandiyoti, R., & Jarvis, K. E. (1999). Determination of 17 trace elements in coal and ash reference materials by ICP-MS applied to milligram sample sizes. Analyst, 124 (2), 177–184. doi: 10.1039/A807849A DOI: https://doi.org/10.1039/a807849a
- Laus, R., Geremias, R., Vasconcelos, H. L., Laranjeira, M. C. M., & Fávere, V. T. (2007). Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres. Journal Hazardous Materials, 149 (2), 471–474. doi:10.1016/j.jhazmat.2007.04.012 DOI: https://doi.org/10.1016/j.jhazmat.2007.04.012
- Li, J., Zhuang, X., & Querol, X. (2011). Trace element affinities in two high-Ge coals from China. Fuel, 90 (1), 240–247. doi:10.1016/j.fuel.2010.08.011 DOI: https://doi.org/10.1016/j.fuel.2010.08.011
- Li, J., Zhuang, X., Querol, X., Font, O., Izquierdo, M. & Wang, M. (2014). New data on mineralogy and geochemistry of high-Ge coals in the Yimin coalfield, Inner Mongolia, China. International Journal of Coal Geology, 125, 10–21. doi:10.1016/j.coal.2014.01.006 DOI: https://doi.org/10.1016/j.coal.2014.01.006
- Liu, G., Zheng, L., Zhang, Y., Qi, C., Chen, Y. & Peng, Z. (2007). Distribution and mode of occurrence of As, Hg and Se and Sulfur in coal Seam 3 of the Shanxi Formation,Yanzhou Coalfield, China. International Journal of Coal Geology, 71 (2–3), 371–385. doi:10.1016/j.coal.2006.12.005 DOI: https://doi.org/10.1016/j.coal.2006.12.005
- Liu, J., Yang, Z., Yan, X., Ji, D., Yang, Y., & Hu, L. (2015). Modes of occurrence of highly-elevated trace elements in superhigh-organic-sulfur coals. Fuel, 156, 190–197. doi:10.1016/j.fuel.2015.04.034 DOI: https://doi.org/10.1016/j.fuel.2015.04.034
- Martínez-Bernal, M. S. (2013). Determinación de la productividad y competitividad de la pequeña minería del distrito minero del norte de Boyacá. Revista de Investigación, Desarrollo e Innovación, 3 (2), 72-86. doi: 10.19053/20278306.2168 DOI: https://doi.org/10.19053/20278306.2168
- Martínez-Ovalle, S., Reyes-Caballero, F., & González-Puin, L.X. (2013). Protección radiológica a trabajadores y público en instalaciones que operan radioisótopos industriales. Revista de Investigación, Desarrollo e Innovación, 3 (2), 120-124. doi: 10.19053/20278306.2166 DOI: https://doi.org/10.19053/20278306.2166
- Morales, W., & Carmona, I. (2007). Estudio de algunos elementos traza en carbones de la cuenca Cesar – Ranchería, Colombia. Boletín ciencias la tierra, 20, 75–87. Recuperado de http://www.revistas.unal.edu.co/index.php/rbct/article/view/728
- Ohki, A., Taira, M., Hirakawa, S., Haraguchi, K., Kanechika, F., Nakajima, T., & Takanashi, H. (2014). Determination of mercury in various coals from different countries by heat-vaporization atomic absorption spectrometry: Influence of particle size distribution of coal. Microchemical Journal, 114, 119–124. doi:10.1016/j.microc.2013.12.012 DOI: https://doi.org/10.1016/j.microc.2013.12.012
- Saha, D., Chakravarty, S., Shome, D., Basariya, M. R., Kumari, A., Kumar, A., Chatterjee, D., Adhikari, J. & Chatterjee, D. (2016). Distribution and affinity of trace elements in Samaleswari coal, Eastern India. Fuel, 181, 376–388. doi:10.1016/j.fuel.2016.04.134 DOI: https://doi.org/10.1016/j.fuel.2016.04.134
- Seredin, V. V., & Dai, S. (2012). Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94, 67–93. doi:10.1016/j.coal.2011.11.001 DOI: https://doi.org/10.1016/j.coal.2011.11.001
- Seredin, V.V. (2012). From coal science to metal production and environmental protection : A new story of success. International Journal of Coal Geology, 90–91, 1–3. doi:10.1016/j.coal.2011.11.006 DOI: https://doi.org/10.1016/j.coal.2011.11.006
- Seredin, V.V., & Finkelman, R.B. (2008). Metalliferous coals: A review of the main genetic and geochemical types. International Journal of Coal Geology, 76 (4), 253–289. doi:10.1016/j.coal.2008.07.016 DOI: https://doi.org/10.1016/j.coal.2008.07.016
- Seredin, V.V., Dai, S., Sun, Y., & Chekryzhov, I.Y. (2013). Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Applied Geochemistry, 31, 1–11. doi:10.1016/j.apgeochem.2013.01.009 DOI: https://doi.org/10.1016/j.apgeochem.2013.01.009
- Stanislav, C. G. V., Vassilev, V., & Eskenazy, G.M. (2001). Behaviour of elements and minerals during preparation and combustion of the Pernik coal, Bulgaria. Fuel Processing Technology, 72 (2), 103-129. doi:10.1016/S0378-3820(01)00186-2 DOI: https://doi.org/10.1016/S0378-3820(01)00186-2
- Unidad de Planeación Minero-Energética [UPME]. (2005). La cadena del carbón. El carbón colombiano fuente de energía para el mundo. Recuperado de: http://www.upme.gov.co/Docs/Cadena_carbon.pdf
- Yoshiie, Y., Taya, Y., Ichiyanagi, T., Ueki, Y, & Naruse, I. (2013). Emissions of particles and trace elements from coal gasification. Fuel, 108, 67–72. doi:10.1016/j.fuel.2011.06.011 DOI: https://doi.org/10.1016/j.fuel.2011.06.011
- Yuepeng, P., Tian, S., Xingru, L., Sun, Y., Li, Y., Wentworth, G. R., & Wang, Y. (2015). Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions. Science of Total Environment, 537, 9–22. doi: 10.1016/j.scitotenv.2015.07.060 DOI: https://doi.org/10.1016/j.scitotenv.2015.07.060
- Zhang, J., Ren, D., Zhu, Y., & Chou. (2004). Mineral matter and potentially hazardous trace elements in coals from Qianxi Fault Depression Area in southwestern Guizhou , China. International Journal of Coal Geology, 57, 49–61. doi:10.1016/j.coal.2003.07.001 DOI: https://doi.org/10.1016/j.coal.2003.07.001