Skip to main navigation menu Skip to main content Skip to site footer

Methodology for the inspection of the tool in the drilling of parts

Abstract

In this paper two methodologies are proposed to minimize the possible errors in the finished parts due to fault in the drilling tool, the first is done before starting the machining, where the initial positions of the tool are verified with respect to the piece, the cutting angle, diameter and length of it. The second is during the machining, through a continuous interaction with the Mach3® software, the cutting angle and the length of the drill are verified, all this to perform a feedback with the user and determine the current state of the tool. In this development, computer vision techniques of low computational cost were used to reduce processing times and obtain a representation of the scene as real as possible. Finally, the proposed methodologies are evaluated in a specific case study where their efficiency is proven.

Keywords

inspection; machining; computer vision; CNC.

pdf (Español) XML (Español)

Author Biography

Lizeth Paola Herrera-Baquero

Ingeniera en Mecatrónica, Magíster en Automatización Industrial

Flavio Augusto Prieto-Ortiz

Ingeniero Electrónico, Doctor en Automatización industrial


References

  1. Assis-lopes, J. A., Steiger-gaqiio, A., & Campus, T. (1996). Application of Stochastic Modelling to Support Predictive Maintenance for Industrial Environments. Manufacturing Systems, 117–122.
  2. Audfray, N., Mehdi-Souzani, C., & Lartigue, C. (2013). A novel approach for 3D part inspection using laser-plane sensors. Procedia CIRP, 10, 23–29. https://doi.org/10.1016/j.procir.2013.08.008 DOI: https://doi.org/10.1016/j.procir.2013.08.008
  3. Barata, M. N., Rauber, T. W., & Steiger-Garcao, A. (1992). Sensor Integration For Expert CNC Machines Supervision. IEEE International Workshop on Emerging Technologies and Factory Automation, 178–183. https://doi.org/10.1109/ETFA.1992.683249 DOI: https://doi.org/10.1109/ETFA.1992.683249
  4. Bosetti, P., Leonesio, M., & Parenti, P. (2013). On development of an optimal control system for real-time process optimization on milling machine tools. Procedia CIRP, 12, 31–36. https://doi.org/10.1016/j.procir.2013.09.007 DOI: https://doi.org/10.1016/j.procir.2013.09.007
  5. Chiu, H.-W., & Lee, C.-H. (2017). Prediction of machining accuracy and surface quality for CNC machine tools using data driven approach. Advances in Engineering Software, 0, 1–12. https://doi.org/10.1016/j.advengsoft.2017.07.008 DOI: https://doi.org/10.1016/j.advengsoft.2017.07.008
  6. Dunn, M. T., & Billingsley, J. (2007). The use of machine vision for assessment of fodder quality. Proceedings 14th International Conference on Mechatronics and Machine Vision in Practice, M2VIP2007, 179–184. https://doi.org/10.1109/MMVIP.2007.4430739 DOI: https://doi.org/10.1109/MMVIP.2007.4430739
  7. Ferreira, M. J., Santos, C., & Monteiro, J. (2009). Cork Parquet Quality Control Vision System Based on Texture Segmentation and Fuzzy Grammar. Architecture, 56(3), 756–765. DOI: https://doi.org/10.1109/TIE.2008.2011619
  8. Jaramillo, A. E., Prieto, F., & Boulanger, P. (2007). Inspección de piezas 3D: revisión de la literatura Inspección de piezas 3D: revisión de la literatura Inspection of 3D parts: a survey. Ingeniería E Investigación, 27(3), 118–126.
  9. Lee, L., Yeh, S., & Lee, J. (2017). Application of Taguchi Method for Determining the Best-Fitted Control Parameters of CNC Machine Tools, 1–6. DOI: https://doi.org/10.1109/ICMA.2017.8016069
  10. Mahmud, M., Joannic, D., Roy, M., Isheil, A., & Fontaine, J. F. (2011). 3D part inspection path planning of a laser scanner with control on the uncertainty. CAD Computer Aided Design, 43(4), 345–355. https://doi.org/10.1016/j.cad.2010.12.014 DOI: https://doi.org/10.1016/j.cad.2010.12.014
  11. Marino, P., & Dominguez, M. a. (1997). Machine vision system for total quality control of SMT electroniccards. 1997 IEEE International Conference on Intelligent Processing Systems (Cat. No.97TH8335), 2, 1427–1431. https://doi.org/10.1109/ICIPS.1997.669253 DOI: https://doi.org/10.1109/ICIPS.1997.669253
  12. Principe, J. C., & Yoon, T. (1990). Knowledge representation in machine tool supervision systems. Proceedings. 5th IEEE International Symposium on Intelligent Control 1990. https://doi.org/10.1109/ISIC.1990.128592 DOI: https://doi.org/10.1109/ISIC.1990.128592
  13. Taouil, K., Chtourou, Z., & Kamoun, L. (2008). Machine Vision Based Quality Monitoring in Olive Oil Conditioning. 2008 First Workshops on Image Processing Theory, Tools and Applications, 2–5. https://doi.org/10.1109/IPTA.2008.4743743 DOI: https://doi.org/10.1109/IPTA.2008.4743743
  14. Tellaeche, a., & Arana, R. (2011). Three-dimensional machine vision and machine-learning algorithms applied to quality control of percussion caps. IET Computer Vision, 5(2), 117. https://doi.org/10.1049/iet-cvi.2010.0019 DOI: https://doi.org/10.1049/iet-cvi.2010.0019

Downloads

Download data is not yet available.

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.