La construcción de indicadores de la actividad económica: una revisión bibliográfica

Contenido principal del artículo

Autores

Lya Paola Sierra Suárez
Jaime Andrés Collazos-Rodríguez
Johana Sanabria-Domínguez
Pavel Vidal-Alejandro

Resumen

Los indicadores de actividad económica son utilizados para medir el comportamiento de una economía cuando ningún otro tipo de indicador, como el producto interno bruto, puede proporcionar información sobre el estado de la economía de forma actualizada. En este documento se realiza una revisión de la literatura nacional e internacional sobre la construcción de indicadores de actividad económica. Adicionalmente, se ofrece un resumen de la metodología más utilizada en la construcción de índices de actividad económica, el modelo factorial dinámico (MFD) y sus diferentes tipos de estimación, resaltando las ventajas y desventajas.  Finalmente, se presenta el método utilizado en la construcción del índice mensual de actividad económica para el Valle del Cauca (IMAE).

Palabras clave:

Detalles del artículo

Licencia

Al enviar un artículo para someter a evaluación a la revista Apuntes del CENES, el(los) autor(es) certifica(n) y acepta(n):

  • Que el artículo no ha sido aceptado para su evaluación en otra revista, ni ha sido publicado.
  • Que, en caso de haber sido reportada la publicación de una versión previa como working paper (o ‘literatura gris’)  en un sitio web, y que en caso de ser aceptada su publicación, será retirado del sitio de Internet, en el que se dejará solamente el título, el resumen, las palabras clave y el hipervínculo a la revista.
  • Que una vez publicado en Apuntes del CENES no se publicará en otra revista.

Al enviar los artículos para su evaluación, el(los) autor(es) acepta(n) que transfiere(n) los derechos de publicación a la Revista Apuntes del CENES, a efectos de su publicación en cualquier formato o medio y se firmará la licencia de uso parcial anexa.

La revista está autorizada por una licencia Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional

Esta licencia permite a otros entremezclar, ajustar y construir a partir de su obra con fines no comerciales, siempre y cuando le reconozcan la autoría y sus nuevas creaciones estén bajo una licencia con los mismos términos.

Para las licencias CC, el principio es el de la libertad creativa. Conscientes de su importancia en nuestra cultura, este sistema complementa el derecho de autor sin oponerse a este.

El contenido de los artículos es responsabilidad de cada autor y no compromete, de ninguna manera, a la revista o a la institución.

Se permite la divulgación y  reproducción de títulos, resúmenes y contenido total, con fines académicos, científicos, culturales y sin ánimo de lucro, siempre y cuando se cite la respectiva fuente. Esta obra no puede ser utilizada con fines comerciales.

Los artículos publicados en Apuntes del CENES no pueden aparecer en ningún medio masivo de comunicación sin ser citada la publicación previa. En el caso de publicaciones de recopilación, los autores deberán pedir autorización expresa a la revista.

Apuntes del Cenes es una revista de acceso abierto, lo que significa que todo el contenido está disponible gratuitamente sin cargo para el usuario o su institución. Se permite a los usuarios leer, descargar, copiar, distribuir, imprimir, buscar o vincular a los textos completos de los artículos, o utilizarlos para cualquier otro propósito legal, sin pedir permiso previo del editor o autor. Esto está de acuerdo con la definición de BOAI de acceso abierto.

Apuntes del Cenes no cobra a los autores por la presentación o la publicación de sus artículos

Para aumentar su visibilidad, los documentos se envían a bases de datos y sistemas de indización, asimismo pueden ser consultados en la página web de la revista y en las bases de datos de: ESCI(WoS) - Scielo - Redalyc - EBSCO - ProQuest - EconLit - DOAJ -   Dialnet - Latindex  - DOTEC - REPECERIH PLUS - The WZB library - Publindex  - VCU -  Econpapers - EconBib - Bibilat  -  REDIB  -   Crossref - Worldcat -  CLASE - SHERPA ROMEO - Academia - EconBiz - Socionet - Vlex -   Actualidad Iberoamericana

Referencias

Alfonso, V., Arango, L., Árias, F., Cangrejo G. & Pulido, J. D. (2012). Ciclos de negocios en Colombia: 1975-2011. Banco de la República. Borradores de Economía, (651).

Alonso, J. (2006). Proyectando el producto departamental bruto caucano con un modelo de análisis factorial dinámico. Cali, Colombia: Centro de Investigaciones en Economía y Finanzas (CIENFI), Universidad ICESI.

Angelini, E., Banbura, M. & Rünstler, G. (2008). Estimating and Forecasting the Euro Area Monthly National Accounts from a Dynamic Factor Model. Journal of Business Cycle Measurement and Analysis, (953).

Arango, L., Árias, F., Flórez, L. A. & Jalil, M. (2008). Cronología de los ciclos de negocios recientes en Colombia. Lecturas de Economía, (68), 9-37.

Arango, L.E. & Melo, L.F. (2006). Expansions and Contractions in Brazil, Colombia and Mexico: A View Through Nonlinear Models. Journal of Development Economics, (80), 501-517. Retrieved from https://doi.org/10.1016/j.jdeveco.2005.02.010

Aruoba, B. Diebold, F. & Scotti, Ch. (2009). Real-Time Measurement of Business Conditions. Journal of Business & Economic Statistics, 27(4), 417–27. Retrieved from https://doi.org/10.1198/jbes.2009.07205

Avella, M.. & Fergusson, L. (2004). El ciclo económico: enfoques e ilustraciones. Los ciclos económicos de Estados Unidos y Colombia. Banco de la República. Borradores de Economía, (284).

Burns, A. F. & W. C. Mitchell (1946). Measuring Business cycles. In NBER, Studies in Business Cycle. New York: Columbia University Press.

Camacho, M.. & Domenech, R. (2012). MICA-BBVA: A Factor Model of Economic and Financial Indicators for Short-term GDP Forecasting. SERIEs, 3, 475–497. Retrieved from https://doi.org/10.1007/s13209-011-0078-z

Camacho, M. & Martínez-Martin, J. (2015). Monitoring the World Business Cycle. Banco de España, Working Paper, (1509). Retrieved from https://doi.org/10.1016/j.econmod.2015.09.013, https://doi.org/10.2139/ssrn.2643954, https://doi.org/10.2139/ssrn.2587001

Camacho, M. & Pérez-Quirós, G. (2010). Introducing the Euro-STING: Short Term Indicator of Euro Area Growth. Journal of Applied Econometrics, 25(4), 663-694. Retrieved from https://doi.org/10.1002/jae.1174

Camacho, M., Pérez-Quirós, G. & Poncela, P. (2014). Green shoots and double dips in the euro area: A real time measure. International Journal of Forecasting, 30(3), 520-535. https://doi.org/10.1016/j.ijforecast.2013.01.006

Castro, C. (2003). Yet Another Lagging, Coincident Tan Leading Index for the Colombian Economy. Departamento Nacional de Planeación. Archivos de Economía, (233).

Choi, H. & Varian, H. (2011). Predicting the Present with Google Trends. The Economic Society of Australia. Economic Record, 87(1).

Doz, C., Giannone, D. & Reichlin, L. (2011). A Two-Step Estimator for Large Approximate Dynamic Factor Models based on Kalman filtering. Journal of Econometrics, 164(1), 188-205. Retrieved from https://doi.org/10.1016/j.jeconom.2011.02.012

Diebold, F.X. & Rudebusch, G. (1996). Measuring Business Cycles: A Modern Perspective, Review of Economics and Statistics, 78, 67-77. Retrieved from https://doi.org/10.2307/2109848

Drechsel, K., Giesen, S. & Lindner, A. (2014). Outperforming IMF Forecasts by the Use of Leading Indicators. Institute for Economic Research. IWH Discussion Papers, (4).

Ferrara, L. & Marsilli, C. (2014). Nowcasting Global Economic Growth: A Factor-Augmented Mixed-Frequency Approach. Banque de France, (515). retrieved from https://doi.org/10.2139/ssrn.2514218

Forni, M., Hallin, M., Lippi, M. & Reichlin, L. (2000). The Generalized Factor Model: Identification and Estimation. The Review of Economics and Statistics, 82(4), 540-554. Retrieved from https://doi.org/10.1162/003465300559037

Forni, M., Hallin, M., Lippi, M. & Reichlin, L. (2003). The Generalized Dynamic Factor Model: One-sided Estimation and Forecasting. Econpapers. Retrieved from http://econpapers.repec.org/paper/ssalemwps/2003_2f13.htm

Forni, M., Hallin, M., Lippi, M. & Reichlin, L. (2005). The Generalized Dynamic Factor Model. Journal of the American Statistical Association, 100(471). Retrieved from https://doi.org/10.1198/016214504000002050

Forni, M., Hallin, M., Lippi, M. & Reichlin, L. (2001). Coincident and Leading Indicators for the Euro Area. The Economic Journal, 111. Retrieved from https://doi.org/10.1111/1468-0297.00620

Giannone, D., Reichlin, L. & Small, D. (2008). Nowcasting: The Real-Time Informational Content of Macroeconomic Data. Journal of Monetary Economics, 55(4), 665-676. Retrieved from https://doi.org/10.1016/j.jmoneco.2008.05.010

Golinelli, R. & Parigi, G. (2014). Tracking World Trade and GDP in Real Time. International Journal of Forecasting, 30(4), 847-862. Retrieved from https://doi.org/10.1016/j.ijforecast.2014.01.008

Gómez, A.M., Sarmiento, J.I. & Fajardo, L. (2016). Advanced Global Indicator of Short and Long Term for the Economy of Cauca 1960-2014. Apuntes del Cenes, 35(62), 209-244. Retrieved from https://doi.org/10.19053/22565779.5231

Hamilton, J. (1994). Time Series Analysis. Princeton, USA: Princeton University Press.

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Journal of Fluids Engineering, 82(1). Retrieved from https://doi.org/10.1115/1.3662552

Kamil, H., Pulido, J. & Torres, J. (2010). El IMACO: un índice mensual líder de la actividad económica de Colombia. Banco de la República. Borradores de Economía, (609).

Kim, M. & Yoo, J. (1995). New Index of Coincident Indicators: A Multivariate Markov Switching Factor Model Approach. Journal of Monetary Economics, 36, 607-630. Retrieved from https://doi.org/10.1016/0304-3932(95)01229-X

Koopman, S. J., Shephard, N. & Doornik, J. A. (1999). Statistical Algorithms for Models in State Space Uuing SsfPack 2.2. The Econometrics Journal, 2(1), 107-160. Retrieved from https://doi.org/10.1111/1368-423X.00023

Litterman, R.B. (1983). A Random Walk, Markov Model for the Distribution of Time Series. Journal of Business and Economic Statistics, 1, 169-173. Retrieved from https://doi.org/10.1080/07350015.1983.10509336, https://doi.org/10.2307/1391858

Marcillo, E. (2013). Un indicador líder para la actividad económica de Colombia. Departamento Nacional de Planeación. Archivos de Economía, (404).

Maurer, M.. & Uribe, M.C. (1996a). El ciclo de referencia de la economía colombiana. Departamento Nacional de Planeación. Archivos de Macroeconomía, (45).

Mejía, L. F., Monsalve, D., Parra., Pulido, S. & Reyes, A. M. (2013). Indicadores ISAAC: siguiendo la actividad sectorial a partir de Google Trends. Notas Fiscales, Ministerio de Hacienda y Crédito Público, (22).

Melo, L. F., Nieto, F., Posada, C. E., Betancourt, Y. R. & Barón, J. D. (2001). Un índice coincidente para la actividad económica colombiana. Borradores de Economía, (195).

Melo, L., Nieto, F. & Ramos, M. (2003). A Leading Index for the Colombian Economic Activity. Banco de la República de Colombia. Borradores de Economía, (243).

Nieto, F. & Melo, L.F. (2001). About a Coincident Index for the State of the Economy. Documento no publicado.
Poncela, P., Senra, L. & Sierra, L. (2014). Common Dynamics of Non Energy Commodity Prices and their Relation to Uncertainty. Applied Economics. 46(30), 3724–3735. Retrieved from https://doi.org/10.1080/00036846.2014.939377

Poncela, P. & Ruiz, E. (2012). More is not Always Better: Back to the Kalman Filter in Dynamic Factor Models. Madrid: Universidad Carlos III de Madrid, Departamento de Estadística.

Ripoll, M., Misas, M. & López, E. (1995). Una descripción del ciclo industrial en Colombia. Banco de la República. Borradores Semanales de Economía, (33).

Rozo, S. (2008). Nuevo enfoque para la construcción de un único indicador líder de la actividad económica colombiana. Ministerio de Hacienda y Crédito Público. Coyuntura Económica, 38(2), 21-62.

Salazar, D. (1996). Gráfico de un sistema de indicadores adelantados y de indicadores coincidentes. M. Maurer, M. Uribe & J. Birchenall (Eds.), El sistema de indicadores líderes para Colombia (pp. 2-88). Bogotá: DNP.

Schumacher, C. (2007). Forecasting German GDP using Alternative Factor Models based on Large Datasets. Journal of Forecasting, 26(4), 271-302. Retrieved from https://doi.org/10.1002/for.1026

Stock, J. & Watson, M. (1989). New Indexes of Coincident and Leading Indicators. Mimeo, Cambridge MA: Evanston.

Stock, J. & Watson, M. (1991). A Probability Model of the Coincident Economic Indicators. In K. Lahiri & G.H. Moore (eds.). The Leading economic indicators: New approaches and forecasting record (pp. 63-90). Cambridge University Press. Retrieved from https://doi.org/10.1017/CBO9781139173735.005

Stock, J. H. & Watson, M. W. (2002). Forecasting Using Principal Components from a Large Number of Predictors. Journal of the American Statistical Association, 97(460), 1167-1179. Retrieved from https://doi.org/10.1198/016214502388618960

Stock, J. H. & Watson, M. W. (2004). Combination Forecasts of Output Growth in a Seven-Country Data Set. Journal of Forecasting, 23(6), 405-430. Retrieved from https://doi.org/10.1002/for.928

Stock, J. H. & Watson, M. (2011). Dynamic factor models. Oxford Handbook on Economic Forecasting. Retrieved from https://doi.org/10.1093/oxfordhb/9780195398649.013.0003

Vidal, P., Sierra, L., Sanabria, J. & Collazos, J. (2015). Indicador mensual de actividad económica (IMAE) para el Valle del Cauca. Banco de la República. Borradores de Economía, (900).

Descargas

La descarga de datos todavía no está disponible.