Indicators of Economic Activity: A Review

Main Article Content


Lya Paola Sierra Suárez
Jaime Andrés Collazos-Rodríguez
Johana Sanabria-Domínguez
Pavel Vidal-Alejandro


Economic indicators are used to measure the performance of the economy when other indicators, such as gross domestic product, may not provide information about the state of the economy in real time. This article provides a review of national and international literature about the construction of indicators of economic activity. Additionally, a summary of the methodology most commonly used in the construction of indices of economic activity, Factorial Dynamic Model (MFD) and different types of estimation is offered.


Article Details


By submitting articles for evaluation, the author agrees to transfer the publishing rights to Revista Apuntes del CENES for publishing in any format or mean and that the attached partial use license will be signed. To increase their visibility, documents are sent to databases and indexing systems also can be viewed on the website and Redalyc - EBSCO - ProQuest - EconLit - DOAJ -  Scielo - Dialnet - ESCI(WoS) - Latindex  - DOTEC - REPECERIH PLUS - The WZB library -  Actualidad Iberoamericana  -   Publindex  - VCU -  Econpapers - EconBib - Bibilat  -  REDIB  -   Crossref - Worldcat -  CLASE - SHERPA ROMEO - Academia - EconBiz - Socionet - Vlex

The journal is under licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

For CC licenses, the principle is the creative freedom. This system complements the copyright without oppose it. The content of the items is the responsibility of each author, and does not compromise in any way, magazine or institution.

Publishing and reproduction of titles, abstracts and full content for academic, scientific, cultural and nonprofit purposes is allowed, when the respective source is acknowledged. This work cannot be used for commercial purposes.

Apuntes del Cenes is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Apuntes del Cenes  does not charge authors for submission or publication

Form 6 Copyright Transfer Form

When sending an article to submit to the Apuntes del CENES journal, the author(s) certify and accept:

1.That the article has not been accepted for evaluation in another journal, nor has it been published.
2.That, in case a publication of a previous version as a working paper (or 'gray literature') has been reported on a website, and that, in the case of publication being accepted, it will be removed from the Internet site, where
will leave only the title, abstract, keywords and hyperlink to the journal.

That once published in Apuntes del CENES will not be published in another magazine.


Alfonso, V., Arango, L., Árias, F., Cangrejo G. & Pulido, J. D. (2012). Ciclos de negocios en Colombia: 1975-2011. Banco de la República. Borradores de Economía, (651).

Alonso, J. (2006). Proyectando el producto departamental bruto caucano con un modelo de análisis factorial dinámico. Cali, Colombia: Centro de Investigaciones en Economía y Finanzas (CIENFI), Universidad ICESI.

Angelini, E., Banbura, M. & Rünstler, G. (2008). Estimating and Forecasting the Euro Area Monthly National Accounts from a Dynamic Factor Model. Journal of Business Cycle Measurement and Analysis, (953).

Arango, L., Árias, F., Flórez, L. A. & Jalil, M. (2008). Cronología de los ciclos de negocios recientes en Colombia. Lecturas de Economía, (68), 9-37.

Arango, L.E. & Melo, L.F. (2006). Expansions and Contractions in Brazil, Colombia and Mexico: A View Through Nonlinear Models. Journal of Development Economics, (80), 501-517. Retrieved from

Aruoba, B. Diebold, F. & Scotti, Ch. (2009). Real-Time Measurement of Business Conditions. Journal of Business & Economic Statistics, 27(4), 417–27. Retrieved from

Avella, M.. & Fergusson, L. (2004). El ciclo económico: enfoques e ilustraciones. Los ciclos económicos de Estados Unidos y Colombia. Banco de la República. Borradores de Economía, (284).

Burns, A. F. & W. C. Mitchell (1946). Measuring Business cycles. In NBER, Studies in Business Cycle. New York: Columbia University Press.

Camacho, M.. & Domenech, R. (2012). MICA-BBVA: A Factor Model of Economic and Financial Indicators for Short-term GDP Forecasting. SERIEs, 3, 475–497. Retrieved from

Camacho, M. & Martínez-Martin, J. (2015). Monitoring the World Business Cycle. Banco de España, Working Paper, (1509). Retrieved from,,

Camacho, M. & Pérez-Quirós, G. (2010). Introducing the Euro-STING: Short Term Indicator of Euro Area Growth. Journal of Applied Econometrics, 25(4), 663-694. Retrieved from

Camacho, M., Pérez-Quirós, G. & Poncela, P. (2014). Green shoots and double dips in the euro area: A real time measure. International Journal of Forecasting, 30(3), 520-535.

Castro, C. (2003). Yet Another Lagging, Coincident Tan Leading Index for the Colombian Economy. Departamento Nacional de Planeación. Archivos de Economía, (233).

Choi, H. & Varian, H. (2011). Predicting the Present with Google Trends. The Economic Society of Australia. Economic Record, 87(1).

Doz, C., Giannone, D. & Reichlin, L. (2011). A Two-Step Estimator for Large Approximate Dynamic Factor Models based on Kalman filtering. Journal of Econometrics, 164(1), 188-205. Retrieved from

Diebold, F.X. & Rudebusch, G. (1996). Measuring Business Cycles: A Modern Perspective, Review of Economics and Statistics, 78, 67-77. Retrieved from

Drechsel, K., Giesen, S. & Lindner, A. (2014). Outperforming IMF Forecasts by the Use of Leading Indicators. Institute for Economic Research. IWH Discussion Papers, (4).

Ferrara, L. & Marsilli, C. (2014). Nowcasting Global Economic Growth: A Factor-Augmented Mixed-Frequency Approach. Banque de France, (515). retrieved from

Forni, M., Hallin, M., Lippi, M. & Reichlin, L. (2000). The Generalized Factor Model: Identification and Estimation. The Review of Economics and Statistics, 82(4), 540-554. Retrieved from

Forni, M., Hallin, M., Lippi, M. & Reichlin, L. (2003). The Generalized Dynamic Factor Model: One-sided Estimation and Forecasting. Econpapers. Retrieved from

Forni, M., Hallin, M., Lippi, M. & Reichlin, L. (2005). The Generalized Dynamic Factor Model. Journal of the American Statistical Association, 100(471). Retrieved from

Forni, M., Hallin, M., Lippi, M. & Reichlin, L. (2001). Coincident and Leading Indicators for the Euro Area. The Economic Journal, 111. Retrieved from

Giannone, D., Reichlin, L. & Small, D. (2008). Nowcasting: The Real-Time Informational Content of Macroeconomic Data. Journal of Monetary Economics, 55(4), 665-676. Retrieved from

Golinelli, R. & Parigi, G. (2014). Tracking World Trade and GDP in Real Time. International Journal of Forecasting, 30(4), 847-862. Retrieved from

Gómez, A.M., Sarmiento, J.I. & Fajardo, L. (2016). Advanced Global Indicator of Short and Long Term for the Economy of Cauca 1960-2014. Apuntes del Cenes, 35(62), 209-244. Retrieved from

Hamilton, J. (1994). Time Series Analysis. Princeton, USA: Princeton University Press.

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Journal of Fluids Engineering, 82(1). Retrieved from

Kamil, H., Pulido, J. & Torres, J. (2010). El IMACO: un índice mensual líder de la actividad económica de Colombia. Banco de la República. Borradores de Economía, (609).

Kim, M. & Yoo, J. (1995). New Index of Coincident Indicators: A Multivariate Markov Switching Factor Model Approach. Journal of Monetary Economics, 36, 607-630. Retrieved from

Koopman, S. J., Shephard, N. & Doornik, J. A. (1999). Statistical Algorithms for Models in State Space Uuing SsfPack 2.2. The Econometrics Journal, 2(1), 107-160. Retrieved from

Litterman, R.B. (1983). A Random Walk, Markov Model for the Distribution of Time Series. Journal of Business and Economic Statistics, 1, 169-173. Retrieved from,

Marcillo, E. (2013). Un indicador líder para la actividad económica de Colombia. Departamento Nacional de Planeación. Archivos de Economía, (404).

Maurer, M.. & Uribe, M.C. (1996a). El ciclo de referencia de la economía colombiana. Departamento Nacional de Planeación. Archivos de Macroeconomía, (45).

Mejía, L. F., Monsalve, D., Parra., Pulido, S. & Reyes, A. M. (2013). Indicadores ISAAC: siguiendo la actividad sectorial a partir de Google Trends. Notas Fiscales, Ministerio de Hacienda y Crédito Público, (22).

Melo, L. F., Nieto, F., Posada, C. E., Betancourt, Y. R. & Barón, J. D. (2001). Un índice coincidente para la actividad económica colombiana. Borradores de Economía, (195).

Melo, L., Nieto, F. & Ramos, M. (2003). A Leading Index for the Colombian Economic Activity. Banco de la República de Colombia. Borradores de Economía, (243).

Nieto, F. & Melo, L.F. (2001). About a Coincident Index for the State of the Economy. Documento no publicado.
Poncela, P., Senra, L. & Sierra, L. (2014). Common Dynamics of Non Energy Commodity Prices and their Relation to Uncertainty. Applied Economics. 46(30), 3724–3735. Retrieved from

Poncela, P. & Ruiz, E. (2012). More is not Always Better: Back to the Kalman Filter in Dynamic Factor Models. Madrid: Universidad Carlos III de Madrid, Departamento de Estadística.

Ripoll, M., Misas, M. & López, E. (1995). Una descripción del ciclo industrial en Colombia. Banco de la República. Borradores Semanales de Economía, (33).

Rozo, S. (2008). Nuevo enfoque para la construcción de un único indicador líder de la actividad económica colombiana. Ministerio de Hacienda y Crédito Público. Coyuntura Económica, 38(2), 21-62.

Salazar, D. (1996). Gráfico de un sistema de indicadores adelantados y de indicadores coincidentes. M. Maurer, M. Uribe & J. Birchenall (Eds.), El sistema de indicadores líderes para Colombia (pp. 2-88). Bogotá: DNP.

Schumacher, C. (2007). Forecasting German GDP using Alternative Factor Models based on Large Datasets. Journal of Forecasting, 26(4), 271-302. Retrieved from

Stock, J. & Watson, M. (1989). New Indexes of Coincident and Leading Indicators. Mimeo, Cambridge MA: Evanston.

Stock, J. & Watson, M. (1991). A Probability Model of the Coincident Economic Indicators. In K. Lahiri & G.H. Moore (eds.). The Leading economic indicators: New approaches and forecasting record (pp. 63-90). Cambridge University Press. Retrieved from

Stock, J. H. & Watson, M. W. (2002). Forecasting Using Principal Components from a Large Number of Predictors. Journal of the American Statistical Association, 97(460), 1167-1179. Retrieved from

Stock, J. H. & Watson, M. W. (2004). Combination Forecasts of Output Growth in a Seven-Country Data Set. Journal of Forecasting, 23(6), 405-430. Retrieved from

Stock, J. H. & Watson, M. (2011). Dynamic factor models. Oxford Handbook on Economic Forecasting. Retrieved from

Vidal, P., Sierra, L., Sanabria, J. & Collazos, J. (2015). Indicador mensual de actividad económica (IMAE) para el Valle del Cauca. Banco de la República. Borradores de Economía, (900).


Download data is not yet available.