Testing the Weak Form of Efficient Market Hypothesis and Causality Analysis in Colombian Food Supply Centers

Evaluación de la hipótesis de eficiencia débil y análisis de causalidad en las centrales de abastos de Colombia

Main Article Content

Leonardo Hernán Talero-Sarmiento
Henry Lamos-Díaz
Edwin Alberto Garavito-Hernández


In Colombia, there are traditional food supply centers to trade agricultural products. Government institutions publish sale prices of these products in weekly reports. In order to determine the random characteristics of these price series and if there are relationships between the centers, we use a battery of six different tests to examine the weak form of efficient market hypothesis and the Granger causality test. For this, this work collected the historical weekly price of 28 agricultural products, taking into account six markets, during the first week of 2013 to the last week of 2017. The main results indicate that markets tend towards efficiency, however, the efficiency depends on the product traded. In addition, the centers in Manizales, Barranquilla and Villavicencio influence the prices of the Bogotá, Bucaramanga and Medellín markets.



Download data is not yet available.

Article Details

Author Biographies (SEE)

Leonardo Hernán Talero-Sarmiento, Universidad Industrial de Santander

Ingeniero Industrial, Candidato a Magister en Ingeniería Industrial de la Universidad Industrial de Santander. Dirección de correspondencia: Calle 9 # 27, Barrio la Universidad, Universidad Industrial de Santander, Escuela de Estudios Industriales y Empresariales, of. 202. Santander, Colombia. e-mail: leonardo.talero@correo.uis.edu.co

Henry Lamos-Díaz, Universidad Industrial de Santander

Doctor en Matemática aplicada de la Universidad Estatal de Moscú. Profesor Titular de la Escuela de Estudios Industriales y Empresarial, Universidad Industrial de Santander.

Edwin Alberto Garavito-Hernández, Universidad Industrial de Santander

Magíster en Ingeniería Industrial de la Universidad Mayaguez de Puerto Rico. Profesor Asociado de la Escuela de Estudios Industriales y Empresarial, Universidad Industrial de Santander.

References (SEE)

Benavides, G. (2009). Price volatility forecasts for agricultural commodities: an application of volatility models, option implieds and composite approaches for futures prices of corn and wheat. Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), 3(2), 40–59.

Bouri, E., Chang, T., & Gupta, R. (2017). Testing the efficiency of the wine market using unit root tests with sharp and smooth breaks. Wine Economics and Policy. https://doi.org/10.1016/j.wep.2017.06.001

Caeiro, F., & Mateus, A. (2014). randtests: Testing randomness in R. R Package Version, 1.

Coronado Ramírez, S., Celso Arellano, P. L., & Rojas, O. (2015). Adaptive market efficiency of agricultural commodity futures contracts. Contaduria y Administracion, 60(2), 389–401. https://doi.org/10.1016/S0186-1042(15)30006-1

Coronado Ramirez, S., Ramirez Grajeda, M., & Celso Arellano, P. L. (2014). Inefficiency in the international coffee market: The case of Colombian arabica. African Journal of Agricultural Research, 9(5), 556–561.

DeJong, D. N., Nankervis, J. C., Savin, N. E., & Whiteman, C. H. (1992). The power problems of unit root test in time series with autoregressive errors. Journal of Econometrics, 53(1–3), 323–343. https://doi.org/10.1016/0304-4076(92)90090-E

Departamento Administrativo Nacional de Estadística. (2016). Cuentas Trimestrales- Colombia Producto Interno Bruto (PIB) Boletín Técnico - Cuarto trimestre 2015. Bogotá.

Departamento Administrativo Nacional de Estadística - DANE. (2017). Cuentas trimestrales - Colombia. Producto Interno Bruto (PIB) Boletín Técnico - Cuarto trimestre de 2016. Bogotá: DANE.

Durbin, J., & Watson, G. S. (1951). Testing for Serial Correlation in Least Squares Regression. II. Biometrika, 38(1/2), 159. https://doi.org/10.2307/2332325

Fama, E. F. (1965). The Behavior of Stock-Market Prices. Journal of Business, 38(1), 34–105. https://doi.org/10.1017/CBO9781107415324.004

Geary, R. C. (1935). The ratio the mean deviation to the standard dviation as a test of normality. Biometrika, 27(3–4), 310–332. https://doi.org/10.1093/biomet/27.3-4.310

Granger, C. W. J. (1986). Developments in the study of cointegrated economic variables. Oxford Bulletin of Economics and Statistics, 48(3), 213–228. https://doi.org/10.1111/j.1468-0084.1986.mp48003002.x

Gujarati, D. N., & Porter, D. C. (2010). Econometria. McGraw-Hill.

Hassan, A., Abdullah, M. S., & Shah, Z. A. (2007). Testing of random walks and market efficiency in an emerging market: An empirical analysis of Karachi Stock Exchange. The Business Review, Cambridge, 9(1), 271–280.

Karali, B., & Power, G. J. (2013). Short- and long-run determinants of commodity price volatility. American Journal of Agricultural Economics, 95(3), 724–738. https://doi.org/10.1093/ajae/aas122

Lachman, J., & Jack, P. (2017). Study of efficiency and information transmission for agricultural futures markets: A comparative analysis between Buenos Aires and Chicago using monthly and daily data. Estudios Economicos, 34(69), 3–23.

Levy, R. A. (1967). The Theory of Random Walks: A Survey of Findings. The American Economist, 11(2), 34–48. https://doi.org/10.1177/056943456701100205

Lo, A. W. (1991). Long-Term Memory in Stock Market Prices. Econometrica, 59(5), 1279–1313. https://doi.org/10.2307/2938368

Lo, A. W. (2005). Reconciling Efficient Market with Behavioral Finance: The Adaptative Markets Hypothesis. The Journal of Investment Consulting, 7(2), 1–25. https://doi.org/10.2139/ssrn.728864

Malkiel, B. G. (2003). The Efficient Market Hypothesis and Its Critics. Journal of Economic Perspectives, 17(1), 59–82. https://doi.org/10.1257/089533003321164958

Nisar, S., & Hanif, M. (2012). Testing weak form of efficient market hypothesis: Empirical evidence from South-Asia. World Applied Sciences Journal, 17(4), 414–427. https://doi.org/10.3968/5524

Peters, E. E. (2015). Fractal market analysis : applying chaos theory to investment and economics. Wiley Finance Editions.

Pfaff, B. (2008). Analysis of Integrated Series with R and Cointegrated Time. Use R!

Resta, M. (2012). Hurst exponent and its applications in time-series analysis. Recent Patents on Computer Science, 5(3), 211–219.

Savin, N., & White, K. (1977). The Durbin-Watson test for serial correlation with extreme sample sizes or many regressors. Econometrica: Journal of the Econometric Society.

Tansuchat, R., Chang, C., & McAleer, M. (2009). Modelling long memory volatility in agricultural commodity futures returns. Available at SSRN 1491890, 1–34. https://doi.org/10.2139/ssrn.1491890

Tejeda, H. A., Goodwin, B. K., & others. (2009). Price volatility, nonlinearity, and asymmetric adjustments in corn, soybean, and cattle markets: Implications of ethanol-driven (market) shocks. In 2009 Conference, April 20-21, 2009, St. Louis, Missouri.

Tillman, J. (1975). The power of the Durbin-Watson test. Econometrica, 43(5), 959–974. Retrieved from http://www.jstor.org/stable/1911337

Velásquez Henao, J. D., & Aldana Dumar, M. A. (2007). Modelado del precio del café colombiano en la bolsa de Nueva York usando redes neuronales artificiales. Retrieved from http://www.scielo.org.co/pdf/rfnam/v60n2/a16v60n2.pdf

Zeileis, A., & Hothorn, T. (2002). Diagnostic checking in regression relationships.