Lethal and Repellent Effect of the Monoterpene Geraniol on Triatoma infestans Nymphs Susceptible and Resistant to Deltamethrin
Abstract
Triatoma infestans is the main vector of the Trypanosoma cruzi parasite, the etiological agent of Chagas disease. Pyrethroid insecticides are the most effective strategy for controlling T. infestans. However, the presence of specimens of T. infestans resistant to pyrethroids now raises the need to seek new alternatives for their control. Bioinsecticides are currently positioned as a novel alternative, less aggressive for the environment and less costly compared to traditional synthetic insecticides. Geraniol is a monoterpene that has been shown to have insecticidal and repellent activity on insects. The objectives of this work were to determine and compare the lethal and repellent activity of geraniol alone and in combination with the pyrethroid insecticide deltamethrin and the insect repellent N,N-Diethyl-meta-toluamide (DEET). Geraniol has been shown to be similar lethal to pyrethroid-susceptible and -resistant nymphs (resistance ratio of 0.8). When the two insecticides were combined, geraniol showed a synergistic effect on the lethality of deltamethrin. In terms of repellent activity, geraniol was less effective than DEET at low concentrations; however, when both molecules were combined, the presence of this monoterpene increased the repellency capacity of DEET to 100%. It is concluded that geraniol has lethal activity on T. infestans nymphs susceptible and resistant to pyrethroids and has a synergistic effect on the lethality of deltamethrin. Likewise, geraniol increased the repellency capacity of DEET on T. infestans.
Keywords
Chagas disease, Insecticide resistance, Pyrethroid, Bioinsecticides, Potentiation
References
- Barnard, D. R., & Xue, R.-D. (2004). Laboratory evaluation of mosquito repellents against Aedes albopictus, Culex nigripalpus, and Ochierotatus triseriatus (Diptera: Culicidae). Journal of Medical Entomology, 41(4), 726–730. https://doi.org/10.1603/0022-2585-41.4.726 DOI: https://doi.org/10.1603/0022-2585-41.4.726
- Busvine, J. R. (1957). A critical review of the techniques for testing insecticides. Commonwealth Institute of Entomology.
- Chapman, R. F. (2013). The insects: Structure and function (5th ed). Cambridge University Press,
- Chen, W., & Viljoen, A. M. (2010). — A review of a commercially important fragrance material. South African Journal of Botany, 76(4), 643–651. https://doi.org/10.1016/j.sajb.2010.05.008 DOI: https://doi.org/10.1016/j.sajb.2010.05.008
- Choochote, W., Chaithong, U., Kamsuk, K., Jitpakdi, A., Tippawangkosol, P., Tuetun, B., Champakaew, D., & Pitasawat, B. (2007). Repellent activity of selected essential oils against Aedes aegypti. Fitoterapia, 78(5), 359–364. https://doi.org/10.1016/j.fitote.2007.02.006 DOI: https://doi.org/10.1016/j.fitote.2007.02.006
- Chou, T.-C. (2006). Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacological Reviews, 58(3), 621–681. https://doi.org/10.1124/pr.58.3.10 DOI: https://doi.org/10.1124/pr.58.3.10
- Dadé, M., Zeinsteger, P., Bozzolo, F., & Mestorino, N. (2018). Repellent and lethal activities of extracts from fruits of chinaberry (Melia azedarach L., Meliaceae) against Triatoma infestans. Frontiers in Veterinary Science, 5, 158. https://doi.org/10.3389/fvets.2018.00158 DOI: https://doi.org/10.3389/fvets.2018.00158
- Dadé, M. M., Daniele, M. R., Machicote, M., Errecalde, J. O., & Rodriguez-Vivas, R. I. (2020). First report of the lethal activity and synergism between deltamethrin, amitraz and piperonyl butoxide against susceptible and pyrethroid-resistant nymphs of Triatoma infestans. Experimental Parasitology, 218, 107986. https://doi.org/10.1016/j.exppara.2020.107986 DOI: https://doi.org/10.1016/j.exppara.2020.107986
- De la Vega, G. J. (2016). Bases fisiológicas de la distribución de triatominos vectores de la enfermedad de Chagas [tesis de doctorado]. Universidad de Buenos Aires. https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n5973_DelaVega.pdf
- Deletre, E., Martin, T., Duménil, C., & Chandre, F. (2019). Insecticide resistance modifies mosquito response to DEET and natural repellents. Parasites & Vectors, 12(1), 89. https://doi.org/10.1186/s13071-019-3343-9 DOI: https://doi.org/10.1186/s13071-019-3343-9
- Gaire, S., Lewis, C. D., Booth, W., Scharf, M. E., Zheng, W., Ginzel, M. D., & Gondhalekar, A. D. (2020). Bed bugs, Cimex lectularius L., exhibiting metabolic and target site deltamethrin resistance are susceptible to plant essential oils. Pesticide Biochemistry and Physiology, 169, 104667. https://doi.org/10.1016/j.pestbp.2020.104667 DOI: https://doi.org/10.1016/j.pestbp.2020.104667
- Gaire, S., Zheng, W., Scharf, M. E., & Gondhalekar, A. D. (2021). Plant essential oil constituents enhance deltamethrin toxicity in a resistant population of bed bugs (Cimex lectularius L.) by inhibiting cytochrome P450 enzymes. Pesticide Biochemistry and Physiology, 175, 104829. https://doi.org/10.1016/j.pestbp.2021.104829 DOI: https://doi.org/10.1016/j.pestbp.2021.104829
- Germano, M. D., & Picollo, M. I. (2018). Stage-dependent expression of deltamethrin toxicity and resistance in Triatoma infestans (Hemiptera: Reduviidae) from Argentina. Journal of Medical Entomology, 55(4), 964–968. https://doi.org/10.1093/jme/tjy017 DOI: https://doi.org/10.1093/jme/tjy017
- Giatropoulos, A., Papachristos, D. P., Kimbaris, A., Koliopoulos, G., Polissiou, M. G., Emmanouel, N., & Michaelakis, A. (2012). Evaluation of bioefficacy of three Citrus essential oils against the dengue vector Aedes albopictus (Diptera: Culicidae) in correlation to their components enantiomeric distribution. Parasitology Research, 111(6), 2253–2263. https://doi.org/10.1007/s00436-012-3074-8 DOI: https://doi.org/10.1007/s00436-012-3074-8
- Govindarajan, M., Rajeswary, M., Hoti, S. L., Bhattacharyya, A., & Benelli, G. (2016). Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitology Research, 115(2), 807–815. https://doi.org/10.1007/s00436-015-4809-0 DOI: https://doi.org/10.1007/s00436-015-4809-0
- Liu, Z., Li, Q. X., & Song, B. (2022). Pesticidal activity and mode of action of monoterpenes. Journal of Agricultural and Food Chemistry, 70(15), 4556– 4571. https://doi.org/10.1021/acs.jafc.2c00635 DOI: https://doi.org/10.1021/acs.jafc.2c00635
- Moretti, A. N., Zerba, E. N., & Alzogaray, R. A. (2013). Behavioral and toxicological responses of Rhodnius prolixus and Triatoma infestans (Hemiptera: Reduviidae) to 10 monoterpene alcohols. Journal of Medical Entomology, 50(5), 1046–1054. https://doi.org/10.1603/ME12248 DOI: https://doi.org/10.1603/ME12248
- Mougabure-Cueto G., & Picollo, M. I. (2021). Insecticide resistance in triatomines. In: A. Guarneri, & M. Lorenzo (Ed.), Triatominae — The biology of Chagas disease vectors (pp. 537–555). Entomology in Focus. Springer International Publishing. https://doi.org/10.1007/978-3-030-64548-9_19 DOI: https://doi.org/10.1007/978-3-030-64548-9_19
- OMS (Organización Mundial de la Salud). (1994). Protocolo de evaluación de efecto insecticida sobre triatominos. Acta Toxicológica Argentina, 2, 29–32.
- OPS/OMS (Organización Panamericana de la Salud). (s. f.) Enfermedad de chagas. https://www.paho.org/es/temas/enfermedad-chagas.
- Pavela, R. (2016). History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects: a review. Plant Protection. Science, 52, 229–241. https://doi.org/10.17221/31/2016-PPS DOI: https://doi.org/10.17221/31/2016-PPS
- Picollo, M. I., Vassena, C., Santo, P., Barrios, S., Zaidemberg, M., & Zerba, E. (2005) High resistance to pyrethroid insecticides associated with ineffective field treatments in Triatoma infestans (Hemiptera: Reduviidae) from Northern Argentina. Journal of Medical Entomology, 42(4), 637–642. https://doi.org/10.1093/jmedent/42.4.637 DOI: https://doi.org/10.1093/jmedent/42.4.637
- Remón, C., Lobbia, P., Zerba, E., Mougabure-Cueto, G. A. (2017). Methodology based on insecticide impregnated filter paper for monitoring resistance to deltamethrin in Triatoma infestans field populations. Medical and Veterinary Entomology, 31(4), 414–426. https://doi.org/10.1111/mve.12252 DOI: https://doi.org/10.1111/mve.12252
- Reynoso, M. N. N., Lucia, A., Zerba, E. N., & Alzogaray, R. A. (2020). The octopamine receptor is a possible target for eugenol-induced hyperactivity in the blood-sucking bug Triatoma infestans (Hemiptera: Reduviidae). Journal of Medical Entomology, 57(2), 627–630. https://doi.org/10.1093/jme/tjz183 DOI: https://doi.org/10.1093/jme/tjz183
- Robertson, J. L., Russell, R. M., Preisler, H. K., & Savin, N. E. (2007). Bioassays with arthropods (2nd ed.). CRC Press. https://doi.org/10.1201/9781420004045 DOI: https://doi.org/10.1201/9781420004045
- Sfara, V., Zerba, E. M., & Alzogaray, R. A. (2006) Toxicity of pyrethroids and repellency of diethyltoluamide in two deltamethrin-resitant colonies of Triatoma infestans Klug, 1834 (Hemiptera: Reduviidae). Memórias do Instituto Oswaldo Cruz, 101(1), 89-94. https://doi.org/10.1590/S0074-02762006000100017 DOI: https://doi.org/10.1590/S0074-02762006000100017
- Sfara, V., Zerba, E. N., & Alzogaray, R. A. (2009). Fumigant insecticidal activity and repellent effect of five essential oils and seven monoterpenes on first-instar nymphs of Rhodnius prolixus. Journal of Medical Entomology, 46(3), 511–515. https://doi.org/10.1603/033.046.0315 DOI: https://doi.org/10.1603/033.046.0315
- Tapondjou, A. L., Adler, C., Fontem, D. A., Bouda, H., & Reichmut, C. (2005) Bioactivities of cymol and essential oils of Cupressus sempervirens and Eucaliptus saligna against Sitophilus zeamais Motschulsky and Tribolium confusum du Val. Journal of Stored Products Research, 41(1), 91–102. https://doi.org/10.1016/j.jspr.2004.01.004 DOI: https://doi.org/10.1016/j.jspr.2004.01.004