Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Efecto de la velocidad de avance en procesos de soldadura por arco eléctrico usando el método de elementos finitos

Resumen

La soldadura es un proceso de unión de elementos comúnmente encontrado a nivel industrial donde uno de los tipos de mayor uso es el de arco eléctrico. Para su correcta aplicación se deben tener en cuenta variables como tipo de electrodo, amperaje, voltaje, velocidad de avance, polaridad, tipo de junta, entre otras. En este trabajo se evaluó el efecto de la velocidad de avance, la cual repercute directamente en el modo de transferencia de metal y en la morfología del cordón de soldadura, por lo tanto, se debe definir correctamente con el fin de lograr satisfactoriamente la unión de los materiales. Para determinar su efecto se calculó el perfil térmico en una placa mediante un software de elementos finitos. Los valores de velocidad empleados se tomaron de especificaciones recomendadas por proveedores industriales de consumibles de soldadura. Además, la simulación se realizó para una junta a tope, donde se asumió que la energía aplicada sobre el metal era uniforme y constante sobre un área circular.

Palabras clave

Soldadura, Arco eléctrico, Simulación, Elementos finitos, Velocidad de avance

PDF

Referencias

  • A. Faye, Y. Balcaen, L. Lacroix, and J. Ale- xis, “Effects of welding parameters on the microstructure and mechanical properties of the AA6061 aluminium alloy joined by a Yb: YAG laser beam,” Journal of Advanced Joining Processes, vol. 3, no. November 2020, p. 100047, jun 2021. [Online]. Avai- lable: https://linkinghub.elsevier.com/retrieve/ pii/S2666330921000078 DOI: https://doi.org/10.1016/j.jajp.2021.100047
  • Z. zhen Xu, Z. qiang Dong, Z. hui Yu, W. ke Wang, and J. xun Zhang, “Relationships between microhardness, microstructure, and grain orientation in laser-welded joints with different welding speeds for Ti6Al4V titanium alloy,” Transactions of Nonferrous Metals So- ciety of China (English Edition), vol. 30, no. 5, pp. 1277–1289, 2020. [Online]. Available: http: //dx.doi.org/10.1016/S1003-6326(20)65295-5 DOI: https://doi.org/10.1016/S1003-6326(20)65295-5
  • T. Abioye, O. Ariwoola, T. Ogedengbe, P. Farayibi, and O. Gbadeyan, “Effects of Welding Speed on the Microstructure and Corrosion Behavior of Dissimilar Gas Metal Arc Weld Joints of AISI 304 Stainless Steel and Low Carbon Steel,” Materials Today: Proceedings, vol. 17, pp. 871–877, 2019. DOI: https://doi.org/10.1016/j.matpr.2019.06.383
  • C. M. Franco-Rendón, H. León-Henao, Á. D. Bedoya-Zapata, J. F. Santa, and J. E. Giraldo B., “Failure analysis of fillet welds with pre- mature corrosion in 316L stainless steel slide gates using constitution diagrams,” Revista UIS Ingenierías, vol. 19, no. 2, pp. 141–148, 2020. DOI: https://doi.org/10.18273/revuin.v19n2-2020016
  • S. Kumar Gupta, S. Mehrotra, A. Ravi Raja, M.Vashista, and M. Khan Yusufzai, “Effect Of Welding Speed On Weld Bead Geometry And Percentage Dilution In Gas Metal Arc Welding Of SS409L,” Materials Today: Proceedings, vol. 18, pp. 5032–5039, 2019. [Online]. Available: https://doi.org/10.1016/j. matpr.2019.07.497https://linkinghub.elsevier. com/retrieve/pii/S2214785319326835 DOI: https://doi.org/10.1016/j.matpr.2019.07.497
  • O. M. Castellanos, A. M. Moreno-uribe, S. A. Ramón-ramón, J. L. Jácome, U. Federal, D. M. Gerais, and B. Correos, “Evaluación de la trans- ferencia metálica y estabilidad del proceso GMAW Evaluation of the metal transfer and stability of GMAW process,” Revista UIS Inge- nierías, vol. 20, no. 3, pp. 47–60, 2021. DOI: https://doi.org/10.18273/revuin.v20n3-2021003
  • R. Fernandes-Lara, A. M. Moreno-Uribe, and A. Q. Bracarense, “Development of a hatch system for the determination of diffusible hydrogen in underwater welding,” Respuestas, vol. 25, no. 1, pp. 168–177, jan 2020. [Online]. Available: https://revistas.ufps.edu. co/index.php/respuestas/article/view/2433 DOI: https://doi.org/10.22463/0122820X.2433
  • H. Hekmatjou, Z. Zeng, J. Shen, J. P. Oliveira, and H. Naffakh-Moosavy, “A Comparative Study of Analytical Rosenthal, Finite Ele- ment, and Experimental Approaches in Laser Welding of AA5456 Alloy,” Metals, vol. 10, no. 4, p. 436, mar 2020. [Online]. Available: https://www.mdpi.com/2075-4701/10/4/436 DOI: https://doi.org/10.3390/met10040436
  • S. Kou, Transport Phenomena and Materials Processing, 1996.
  • P. Promoppatum, S.-C. Yao, P. C. Pistorius, and A. D. Rollett, “A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion,” Engineering, vol. 3, no. 5, pp. 685–694, oct 2017. [Online]. Available: http://dx.doi.org/10.1016/J.ENG. 2017.05.023https://linkinghub.elsevier.com/ retrieve/pii/S2095809917307208 DOI: https://doi.org/10.1016/J.ENG.2017.05.023
  • M. Sundar, A. K. Nath, D. K. Bandyopadhyay, S. P. Chaudhuri, P. K. Dey, and D. Misra, “Nu- merical simulation of melting and solidification in laser welding of mild steel,” International Journal of Computational Materials Science and Surface Engineering, vol. 1, no. 6, pp. 717– 733, 2007. DOI: https://doi.org/10.1504/IJCMSSE.2007.017926
  • A. Anca, A. Cardona, J. Risso, and V. D. Fa- chinotti, “Finite element modeling of welding processes,” Applied Mathematical Modelling, vol. 35, no. 2, pp. 688–707, feb 2011. [Online]. Available: https://linkinghub.elsevier.com/ retrieve/pii/S0307904X10002751 DOI: https://doi.org/10.1016/j.apm.2010.07.026
  • G. A. Taylor, M. Hughes, N. Strusevich, and K. Pericleous, “Finite volume methods applied to the computational modelling of welding phenomena,” Applied Mathematical Modelling, vol. 26, no. 2, pp. 311–322, feb 2002. [Online]. Available: https://linkinghub.elsevier. com/retrieve/pii/S0307904X01000634 DOI: https://doi.org/10.1016/S0307-904X(01)00063-4
  • E. Ranjbarnodeh, S. Serajzadeh, A. H. Koka- bi, and A. Fischer, “Prediction of temperature distribution in dissimilar arc welding of stain- less steel to carbon steel,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 226, no. 1, pp. 117–125, 2012. DOI: https://doi.org/10.1177/0954405411403551
  • M. Farajpour and E. Ranjbarnodeh, “Finite ele- ment simulation of welding distortion in dis- similar joint by inherent deformation method,”Soldagem e Inspecao, vol. 23, no. 1, pp. 60–72, 2018. DOI: https://doi.org/10.1590/0104-9224/si2301.07
  • M. S. S. Rathod, S. P. Gaikwad, and N. S. Ka- tikar, “Finite Element Model for the Effect of Heat Input and Speed on Residual Stress during Welding,” International Journal of Application or Innovation in Engineering and Management (IJAIEM), vol. 2, no. 8, pp. 236–241, 2013.
  • M.MorakabiyanEsfahani,A.Farzadi,andS.R. Alavi Zaree, “Effect of Welding Speed on Gas Metal Arc Weld Pool in Commercially Pu- re Aluminum: Theoretically and Experimen- tally,” Russian Journal of Non-Ferrous Metals, vol. 59, no. 1, pp. 82–92, 2018. DOI: https://doi.org/10.3103/S1067821218010121
  • M. Bin, “Thermal simulation of different wel- ding speed and metal thickness for butt-joint welding with Ansys,” Ph.D. dissertation, Uni- versiti Teknologi Petronas, 2015.
  • J. Winczek, M. Gucwa, and K. Makles, “Analysis of thermal cycles and phase transfor- mations during multi-pass arc weld surfacing of steel casts taking into account heat of the weld,” Journal of Applied Mathema- tics and Computational Mechanics, vol. 17, no. 1, pp. 89–100, mar 2018. DOI: https://doi.org/10.17512/jamcm.2018.1.09
  • S. Nadimi, R. Khoushehme, B. Rohani, and A. Mostafapou, “Investigation and Analysis of Weld Induced Residual Stresses in Two Dissimilar Pipes by Finite Element Modeling,” Journal of Applied Sciences, vol. 8, no. 6, pp. 1014–1020, mar 2008. [Online]. Availa- ble: https://www.scialert.net/abstract/?doi=jas. 2008.1014.1020 DOI: https://doi.org/10.3923/jas.2008.1014.1020

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.