Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Monte carlo simulation of different positron emitting radionuclides incorporated in a soft tissue volume / Simulación de Monte carlo de diferentes radionúclidos emisores de positrones incorporados en un volumen de tejido blando

Resumen

Monte Carlo calculations were carried out where compounds with positron-emitters radionuclides, like FDG (18F), Acetate (11C), and Ammonium (13N), were incorporated into a soft tissue volume, in the aim to estimate the type of particles produced their energies, their mean free paths, and the absorbed dose at different distances with respect to the center of the volume. The volume was modeled with a radius larger than the maximum range of positrons in order to produce 0.511 keV annihilation gamma-ray photons. With the obtained results the absorbed dose, in various organs and tissues able to metabolize different radiopharmaceutical drugs, can be estimated. The code used was GEANT4.

Palabras clave

Positrones, Dosis absorbida, simulación Monte Carlo

PDF

Archivo(s) complementario(s)

Transferencia de derechos de autor

Biografía del autor/a

Segundo Agustín Martínez Ovalle

Dr. Bioingeniería y Física Médica Profesor Asociado Facultad de Ciencias Escuela de Física


Referencias

  1. A. Iagaru, A. Kalinyak, J. E. McDougall, “I. R. F-18 FDG PET/CT in the management of thyroid cancer”, Clinical Nuclear Medicine, vol. 32, pp. 690-695, 2007. DOI: https://doi.org/10.1097/RLU.0b013e318125037a
  2. International Atomic Energy Agency, “Quality assurance for PET and PET/CT systems Quality assurance for PET and PET/CT systems”, IAEA- Health Series No. 1, Viena, 2009.
  3. R. Badawi,“Introduction to PET physics”, http://depts.washington.edu/nucmed/IRL/pet_intro/.January, 2009.
  4. G.B. Saha, “Centre de Physique des Particles de Marseille (CPPM). Available in:”, The Cleveland Clinic Foundation, USA. Springer, 2012.
  5. ImXgam group, “Centre de Physique des Particles de Marseille (CPPM). Available in:”, http://www.cppm.in2p3.fr/rubrique.php3?id_rubrique=185&id_parent=7&lang=fr, [Reviewed
  6. on January 2015].
  7. A. Granov, L. Tiutin, T. Schwarz (Editors), Positron Emission Tomography. Springer-Verlag Berlin Heidelberg, 2013. DOI: https://doi.org/10.1007/978-3-642-21120-1
  8. D. L. Bailey, D. W. Townsend, P. E. Valk, M. N. Maisey (Editors), Positron Emission Tomography. Springer-Verlag Berlin Heidelberg, 2005. DOI: https://doi.org/10.1007/b136169
  9. S. F. Barrington, M. N. Maisey, R. L. Wahl, E. E. Kim, “Atlas of Clinical positron Emission Tomography”, The Journal of Nuclear Medicine, vol. 47, pp. 2065, 2006.
  10. E. L. Kramer, J. P. Ko, F. Ponzo, K. Mourtzikos. Positron Emission Tomography and Computed Tomography: A Disease-Oriented Approach. New York. 2009. DOI: https://doi.org/10.3109/9781420020113
  11. W. Belinato, W.S. Santos, C.M.M. Paschoal, D.N. Souza. “Monte Carlo simulations in multidetector CT (MDCT) for two PET/CT scanner models using MASH and FASH adult
  12. phantoms”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 784, pp. 524530, 2015.
  13. S. Nicol, Étudeet construction d’un tomographe TEP/TDM pour petitsanimaux, combinant modules phoswich á scintillateurs et détecteur à pixels hybrids. Thèse de Doctorat Université de la Mediterranée, Aix –Marseille II, 2010.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.