Skip to main navigation menu Skip to main content Skip to site footer

Quantum Mechanics in Coordinate and Moment Representations Through Three Simple Problems

Abstract

In this paper we present the solution of the stationary Schrödinger equation in the coordinates and momentum
representations for three simple problems: the linear potential, the harmonic oscillator and the Dirac delta
potential. We verify through explicit calculation that the wave functions obtained in each representation
are connected through the Fourier transform, showing that both solutions constitute two complementary
representations of the same quantum state. From a pedagogical point of view, this shows that both solutions
contain information of equal theoretical value and constitute two complementary representations.

Keywords

Schrödinger equation, coordinates and momentum representations, Fourier transform.

PDF (Español)

References

[1] J. J. Sakurai. Modern Quantum Mechanics. Addison-Wesley Pub. Co, rev. edition, 1994.

[2] C. Cohen-Tannoudji, B. Diu, and F. Laloe. Quantum Mechanics, volume 1. John Wiley and Sons, 1 edition, 1977.

[3] D. McMahon. Quantum Mechanics DeMYSTi- FieD. McGraw-Hill, 3 edition, 2006.

[4] Juan Carlos López Vieyra. Introducción a la mecánica cuántica, Jul. 1997. Instituto de Ciencias Nucleares de la UNAM, https://www.nucleares.unam.mx/ vieyra/cua- nt1.html.

[5] Richard Fitzpatrick. Quantum mechanics, Jul. 2010. The University of Texas at Austin, http://farside.ph.utexas.edu/teaching/qmech- /Quantum/Quantum.html.

[6] E. Guillaumín-España, A. L. Salas-Brito, R. P. Martínez y Romero, and H. N. Núñez- Yépez. Simple quantum systems in the momentum representation. Rev. Mex. Fis., 47(1):98, 2001.

[7] F. Constantinescu and E. Magyari. Problems in Quantum Mechanics. Pergamon, 1978.

[8] R. W. Robinet. Quantum and classical probabi- lity distributions for position and momentum. Am. J. Phys., 63(9):823, 1995.

[9] H.N.Núñez-Yépez,C.A.Vargas,andA.L.Sa- las Brito. The one-dimensional hydrogen atom in momentum representation. Eur. J. Phys., 8(3):189, 1987.

[10] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions (without Numerical Tables). NBS, 10 edition, 1972.

[11] I. I. Go ́dman, V. D. Krivchenkov, B. T. Gei- likman, E. Marquit, and E. Lepa. Problems in Quantum Mechanics. Addison-Wesley Pub. Co, authorized rev. edition, 1961.

[12] D. J. Griffiths. Introduction to Quantum Me- chanics. Prentice Hall, 1st edition, 1995.

[13] L. D. Landau and E. M. Lifshitz. Quantum Mechanics: Non-Relativistic Theory, volume 3 of Course on Theoretical Physics, Vol 3. Pergamon Pr, 3 edition, 1981.

[14] Eugen Merzbacher. Quantum Mechanics. Wi- ley, 3 edition, 1997.

[15] I. S. Gradshteyn and I.M. Ryzhik. Table of In- tegrals, Series, and Products. Academic Press, 7th ed edition, 2007.

[16] M. S. Spiegel, S. Lipschutz, and J. Liu. Mat- hematical Handbook of Formulas and Tables. McGraw-Hill, 3 edition, 2009.

[17] Wolfram Research, Inc. Mathematica, Ver- sion 8.0. Champaign, IL, 2010.

Downloads

Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.