Skip to main navigation menu Skip to main content Skip to site footer

Electronic Structure of GaAs and AlAs using a Hamiltonian Tight-Binding sp3s∗

Abstract

We calculate the electronic states in volume for GaAs and AlAs in Zinc-Blenda structure using the Tight-
Binding (TB) method. The TB Hamiltonian was constructed using a base of s, p and s orbitals. The
s orbitals represent excited states with equal symmetry as the s orbitals. Carrying out the numerical
diagonalization of the Hamiltonian, the dispersion relationships were determined for some directions of
high symmetry of the first Brillouin zone (FBZ), obtaining a direct gap of 1.54 eV for GaAs and an indirect
gap of 2.26 eV for AlAs. The total (DOS) and partial state densities indicate the presence of s orbitals in
the lower part of the valence band (BV), p orbitals in the upper part of the BV and in the lower part of the
conduction band (BC), and s orbitals on top of BC. Our results agree quite well with other experimental
and theoretical reports.

Keywords

Tight-Binding, dispersion relations, density of states.

PDF (Español)

References

[1] S. Logothetidis, M. Alouani, M. Garriga, and M. Cardona. E 2 interband transitions in AlxGa1−xAs alloys. Phys. Rev. B, 41:2959– 2965, 1990.

[2] A. Bautista, L. Pérez, U. Pal, and J. Rivas. Estudio estructural de los semiconductores AlP, GaAs y AlAs con estructura wurzita. Revista Mexicana de Física, 49:9–14, 2003.

[3] D. Chandra Gupta and S. Kulshrestha. Effect of high pressure on polymorphic phase transition and electronic structure of XAs (X=Al, Ga, In). Phase Transitions, 82:850–865, 2009.

[4] A. Srivastava, N. Tyagi, U.S. Sharma, and R.K. Singh. Pressure induced phase transformation and electronic properties of AlAs. Materials
Chemistry and Physics, 125:66–71, 2011.

[5] Peiji Geng, Weiguo Li, Xianhe Zhang, Xuyao Zhang, Yong Deng, and Haibo Kou. A novel theoretical model for the temperature de-
pendence of band gap energy in semiconductors. Journal of Physics D: Applied Physics, 50:40LT02, 2017.

[6] M. B. Panish and H. C. Casey. Temperature dependence of the energy gap in GaAs and GaP. Journal of Applied Physics, 40:163–167, 1969.

[7] S. C. Jain and D. J. Roulston. A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and Ge x Si 1−x strained
layers. Solid-State Electronics, 34:453–465, 1991.

[8] O. Madelung (ed). Semiconductors: group IV Elements and III-IV compounds. Springer, 1991.

[9] B. Monemar. Fundamental energy gaps of AlAs and AlP from photoluminescence excitation spectra. Phys. Rev. B, 8:5711–5718, 1973.

[10] W. A. Harrison. Bond-orbital model and the properties of tetrahedrally coordinated solids. Phys. Rev. B, 8:4487–4498, 1973.

[11] W. A. Harrison and S. Ciraci. Bond-orbital model. II. Phys. Rev. B, 10:1516–1527, 1974.

[12] S. T. Pantelides and W. A. Harrison. Structure of the valence bands of zinc-blende-type semiconductors. Phys. Rev. B, 11:3006–3021, 1975.

[13] W. A. Harrison. Electronic Structure and the Properties of Solids. Freeman, San Francisco, 1980.

[14] D. J. Chadi and M. L. Cohen. Tight-binding calculations of the valence bands of diamond and zincblende crystals. physica status solidi (b), 68:405–419, 1975.

[15] Ch. Kittel. Introduction to Solid State Physics. John Wiley & Sons, Inc, eighth edition, 2005.

[16] Wikipedia. Brillouin zone, Diciembre de 2020 (última edición de la página). https://en.wikipedia.org/wiki/Brillouin_zone (Acedido el 21 de marzo de 2021).

[17] P. Vogl, H. P. Hjalmarson, and J. D. Dow. A semi-empirical tight-binding theory of the electronic structure of semiconductors. Journal of Physics and Chemistry of Solids, 44:365–378, 1983.

Downloads

Download data is not yet available.

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.