Hopf bifurcation in the study of synchronous motor stability
Abstract
In this document the dynamic model of the synchronous motor is presented, which has a typical structure of Lienard-type systems, the theory of dynamic systems is used, especially bifurcations, in this case, Hopf’s, which will be applied to the described model, to show the variations in the balance points of the system by taking the voltage of the bus to which it is connected as a variable parameter.
Keywords
Bifurcation, asymptotic stability, periodic orbits, equilibrium points
References
- J. Zhu, D. Chen, H. Zhao, and R. Ma, “Non- linear dynamic analysis and modeling of frac- tional permanent magnet synchronous motors”, Journal of Vibration and Control, vol. 22, no. 7, pp. 1855-1875, 2016. DOI: https://doi.org/10.1177/1077546314545099
- P. Arumugam, T. Hamiti, C. Brunson, and C. Gerada, “Analysis of vertical strip wound fault- tolerant permanent magnet synchronous ma- chines ”, IEEE Transactions on Industrial Elec- tronics, vol. 61, pp. 1158â1168, 2014. DOI: https://doi.org/10.1109/TIE.2013.2259777
- H. H. Choi, J. W. Jung, “Fuzzy speed control with an acceleration observer for a permanent magnet synchronous motor”, Nonlinear Dynamics, vol. 77, pp. 1717-1727, 2012. DOI: https://doi.org/10.1007/s11071-011-0099-y
- P. Kundur, J. Pascrba, V. Ajjarapu, G. Ander- sson, A. Bose, C. Cazinares, T. Van Cutsem, “Definition and classification of power system stability”, IEEE transactions on Power Sys-
- tems, vol. 19, no. 2, pp. 1387-1401, 2004. DOI: https://doi.org/10.1109/TPWRS.2004.825981
- R. A. DeCarlo, M. S. Branicky, S. Pettersson, and B. Lennartson, “Perspectives and results on the stability and stabilizability of hybrid systems“, Proc. IEEE, vol. 88, no. 7, pp. 1069- 1082, 2000. DOI: https://doi.org/10.1109/5.871309
- T. S. Lee and S. Ghosh, “The concept of sta- bility in asynchronous distributed decision- making systems “, IEEE Trans. Systems, Man, and CyberneticsâB: Cybernetics, vol. 30, pp. 549 - 561, 2000. DOI: https://doi.org/10.1109/3477.865172
- N. Fernandopulle and R. S. Ramshaw, “Analy- sis of synchronous motor stability using Hopf bifurcation”, Electric Machines and Power Sys- tems, vol. 19, no. 3, pp. 239-250, 1991. DOI: https://doi.org/10.1080/07313569108909521
- Z. Li, J. B. Park, Y. H. Joo, B. Zhang, G. Chen, “Bifurcations and chaos in a permanent-magnet synchronous motor.”, IEEE Transactions on Circuits and Systems I: Fundamental Theory
- and Applications,, vol. 49, no. 3, pp. 383-387, 2002. DOI: https://doi.org/10.1109/81.989176
- J. Guckenheimer and P. Holmes, Nonlinear Os- cillations, Dynamical Systems, and Bifurcation of Vector Fields. New York: Springer-Verlag, 198.
- S. H. Strogatz and R. F. Fox, “Nonlinear dy- namics and chaos: With applications to physics, biology, chemistry and engineering “, Physics Today, vol. 48, p. 196, 1995. DOI: https://doi.org/10.1063/1.2807947
- S. Lenci G. Regga (Eds.), “Global Nonlinear Dynamics for Engineering Design and System Safety”. Springer, 2019. DOI: https://doi.org/10.1007/978-3-319-99710-0
- A. Roldán, J. Martinez-Moreno, C. Roldán, E. Karapinar “Some remarks on multidimensional fixed-point theorems “. Fixed Point Theory, vol. 15, no.2, pp. 545-558, 2014. DOI: https://doi.org/10.1186/1687-1812-2014-13
- F. Shaddad, M. S. Noorani, S. M. Alsulami, and H. Akhadkulov, Coupled point results in partially ordered metric spaces without compatibility, Fixed Point Theory and Applications, 2014, 197 - 204, 2014. DOI: https://doi.org/10.1186/1687-1812-2014-204
- M. Guysinsky, B. Hasselblatt and V. Rayskin, “Differentiability of the Hartman-Grobman lin- earization“, Discrete and Continuous Dynamical Systems, vol. 9, no. 4, pp. 979-984, 2003. DOI: https://doi.org/10.3934/dcds.2003.9.979
- E. A. Coayla-Teran, S. E. A. Mohammed, P. R. C. Ruffino. “Hartman-Grobman theorems along hyperbolic stationary trajectories“, Discrete and Continuous Dynamical Systems, vol. 17, no. 2, pp 281, 2007. DOI: https://doi.org/10.3934/dcds.2007.17.281
- V. Kolmogorov, and R. Zabih. “What energy functions can be minimized via graph cuts¿‘. In European conference on computer vision. Springer, Berlin, Heidelberg, pp. 65-81 2002. DOI: https://doi.org/10.1007/3-540-47977-5_5
- V. Kolmogorov and R. Zabih. “Visual corre- spondence with occlusions usinggraph cuts “. In Proceedings Eight International Conference on Computer Vision, Canada, pp. 508 - 515, 2001.
- W. D. Rosehart, C. A. Cañizares. “Bifurcation analysis of various power system models“, In- ternational Journal of Electrical Power Energy Systems , vol. 21, no. 3, pp. 171-182, 1999. DOI: https://doi.org/10.1016/S0142-0615(98)00037-4
- A. Meesa and L. Chua, L. “The Hopf bifurca- tion theorem and its applications to nonlinear oscillations in circuits and systems “, IEEE transactions on circuits and systems, vol. 26, no. 4, pp. 235-254, 1979. DOI: https://doi.org/10.1109/TCS.1979.1084636
Downloads
Download data is not yet available.