Dynamic systems with delays under the smith predictor methodology
Abstract
This contribution presents a solution to the dead time problem that is known as "Smith Predictor." This solution allows us to use already known techniques for the design of controllers for systems without delay and adapt them to systems with delay. "As a design goal, it aims to achieve that the response of the system with delay, has the same dynamic characteristics of the system without delay, for example, that has the same response to the step input, but displaced in time the value of the delay.
Keywords
Smith Predictor, systems without delays, step input
References
- K. J. Astrom, C. C. Hang, and B. C. Lim, “A new Smith predictor for controlling a process with an integrator and long dead-time”, IEEE transactions on Automatic Control, vol. 39, no. 2, pp. 343-345, 1994. DOI: https://doi.org/10.1109/9.272329
- T. Liu, Y. Z. Cai, D. Y. Gu, and W. D. Zhang, “New modified Smith predictor scheme for integrating and unstable processes with time de- lay”, IEE Proceedings-Control Theory and Applications, vol. 152, no. 2, pp. 238-246, 2005. DOI: https://doi.org/10.1049/ip-cta:20041232
- D. L. Laughlin, D. E. Rivera, and M. Morari, “Smith predictor design for robust perfor- mance”, International Journal of Control, vol. 46, no. 2, pp. 477-504, 1987. DOI: https://doi.org/10.1080/00207178708933912
- W. D. Zhang and Y. X. Sun, “Modified Smith predictor for controlling integrator/time delay processes”, Industrial Engineering Chemistry Research, vol. 35, no. 8, pp. 2769-2772, 1996. DOI: https://doi.org/10.1021/ie950664v
- W. D. Zhang, Y. X. Sun, and X. Xu, “Two degree-of-freedom Smith predictor for pro- cesses with time delay”, Automatica, vol. 34, no. 10, pp. 1279-1282, 1998. DOI: https://doi.org/10.1016/S0005-1098(98)00075-2
- T. Singh and S. R. Vadali, “Robust time-delay control”, Journal of dynamic systems, measure- ment, and control, vol. 115, no. 2A, pp. 303- 306, 1993. DOI: https://doi.org/10.1115/1.2899035
- R. C. Miall, D. J. Weir, D. M. Wolpert, and J. F. Stein, “Is the cerebellum a smith predictor?”, Journal of motor behavior, vol. 125, no. 3, pp. 203-216, 1993. DOI: https://doi.org/10.1080/00222895.1993.9942050
- H. Arioui, S. Mammar, and T. Hamel, “A smith- prediction based haptic feedback controller for time delayed virtual environments systems”, In Proceedings of the 2002 American Control Conference, vol. 5, IEEE Cat. No. CH37301, pp. 4303-4308, May 2002. DOI: https://doi.org/10.1109/ACC.2002.1024609
- M. R. Matausek, and A. D. Micic, “A modified Smith predictor for controlling a process with an integrator and long dead-time”, IEEE trans- actions on automatic control, vol. 41, no. 8, pp. 1199-1203, 1996. DOI: https://doi.org/10.1109/9.533684
- A. Bahill, “A simple adaptive smith-predictor for controlling time-delay systems: A tutorial”, IEEE Control systems magazine, vol. 3, no. 2, pp. 16-22, 1983. DOI: https://doi.org/10.1109/MCS.1983.1104748
- N. Abe and K. Yamanaka, “Smith predictor control and internal model control-a tutorial”, In SICE 2003 Annual Conference, vol. 2, IEEE Cat. No. 03TH8734, pp. 1383-1387, August 2003.
- S. Majhi and D. P. Atherton, ‘controller param- eters for a new Smith predictor using autotun- ing”, Automatica, vol. 36, no. 11, pp. 1651- 1658, 2000. DOI: https://doi.org/10.1016/S0005-1098(00)00085-6
- TheSmithpredictor,themodifiedSmithpredic- tor, and the finite spectrum assignment: A com- parative studyâ, Tamas G. Molnar, ... Tamas Insperger, in Stability, Control and Application of Time-delay Systems, 2019.
- “¿Should we forget the Smith Predictor? “, Grimholt Sigurd Skogestad, I FAC-Papers On- Line , vol. 51, no. 4, 2018, pp. 769-774. DOI: https://doi.org/10.1016/j.ifacol.2018.06.203
- Z. Li, J. Bai, H. Zou, “Modified two-degree-of- freedom Smith predictive control for processes with time-delay“, Measurement and Control, vol. 5, no. 3, pp. 691-697, 2020. DOI: https://doi.org/10.1177/0020294019898743
- M. Huba, P. Bistak, and D. Vrancic, “DOF IMC and Smith-Predictor-Based Control for Stabilised Unstable First Order Time Delayed Plants “, Mathematics 2021, vol. 9, no.9, pp. 1064, 2021. DOI: https://doi.org/10.3390/math9091064
Downloads
Download data is not yet available.