Skip to main navigation menu Skip to main content Skip to site footer

Diptera Cell Lines: Characteristics, Applications and Contributions From Colombia

Abstract

Cell cultures are a tool that allows the maintenance of cells in vitro preserving their physiological, biochemical and genetic characteristics to the maximum, which can present very diverse properties depending on the species, tissue of origin and the culture medium used. The use of dipteran cell cultures constitutes a valuable methodology in different disciplines, such as physiology, genetics, biochemistry and pathology; thus, for example, it has been possible to study various diseases of interest in both human and veterinary medicine. This review presents information on multiple cell lines of the order Diptera, which have been used to carry out studies of cell-cell interaction, intracellular flow of metabolites, production of bioinsecticides, viral amplification and production of antimicrobial peptides. In Colombia, 12 dipteran cell lines have been established, characterized and standardized, some of which have been used as substrates in studies of the biological cycle of parasites of the genus Leishmania, as well as in the evaluation of arbovirus susceptibility. In this trend, the information on cell lines derived from dipterans is analyzed and discussed in order to carry out this review of their characteristics and applications.

Keywords

Biotechnology, cell culture, Diptera, susceptibility, viral susceptibility

PDF (Español)

References

  1. M. Marzocca, “Caracterización de antígenos recombinantes de la glicoproteína E2 del virus de la diarrea viral bovina y su utilización como vacunas y reactivos de diagnóstico”, tesis de maestría, Biblioteca central LELOIR, 2013.
  2. H. Eagle, “Amino Acid Metabolism in Mammalian Cell Cultures. Science”, vol. 130, pp. 432 – 437, 1959 Disponible en: 10.1126/ciencia.130.3373.432
  3. A. Igarashi, “Mosquito cell culture and study of arthropod-borne togaviruses”, Science Direct, vol. 30, pp. 21-42, 1985. Disponible en: https://doi.org/10.1016/S0065-3527(08)60447-9
  4. J. Local, “Mecanismo de activación celular en células normales y transformadas por oncogenes”, Seminario Medico, vol., 47, pp. 55-66, 1995. Disponible en: https://dialnet.unirioja.es
  5. M. Verkerk, J Tramper, J Van, D Martens, “Insect cells for human food. Biotechnol”, vol. 25, pp. 198-202, 2007. Disponible en: 10.1016/j.biotechadv.2006.11.004
  6. G. Smagghe, C. Goodman, D. Stanley, “Insect cell culture and applications to research and pest management” Springer, vol. 45, pp. 93-105, 2009. Disponible en: https://doi.org/10.1007/s11626-009-9181-x
  7. Z. Braude, V. Kakpakov, N. Schuppe, “Male diploid embryonic cell line of Drophila virilis”. In Vitro Cellular & Developmental Biology, vol. 22, pp. 481–484, 1986. Disponible en: http://www.jstor.org/stable/4295952.
  8. K. Reddy, R. Yedery, C. Aranha, “Antimicrobial peptides: premises and promises. International journal of antimicrobial agents”, ELSEVIER, vol. 24, pp. 536-547, 2004. Disponible en: https://doi.org/10.1016/j.ijantimicag.2004.09.005
  9. A. Zapata, E. Cárdenas, F. Bello, “Characterization of cell cultures derived from Lutzomyia spinicrassa (Diptera: Psychodidae) and their susceptibility to infection with Leishmania (Viannia) braziliensis” Med. Sci. Monit, vol. 11, pp. 457-464), 2005. Disponible en: PMID: 16319783
  10. S. Jacobs, L. Wang, A. Rosales, R. Berwaer, E. Vanderlinden, A. Failloux, L. Naesen, L. Delang, “Favipiravir Does Not Inhibit Chikungunya Virus Replication in Mosquito Cells and Aedes aegypti Mosquitoes”, Microorganisms, vol. 9, pp. 944, 2021. Disponible en: https://doi.org/10.3390/microorganismos9050944.
  11. G. Charpentier, S. Belloncik, G. Ducros, D. Fontenille, L. Tian, J. Quiot, “Establishment and Characterization of Three Cell Lines from Aedes triseriatus (Diptera: Culicidae)”, J Med Entomol, vol. 32 pp. 793-800, 1995. Disponible en: 10.1093/jmedent/32.6.793.
  12. T. Grace, (1966). “Establecimiento de una línea de células de mosquito (Aedes aegypti L.) cultivadas in vitro” Nature, vol. 211, pp. 366–367, 1966. Disponible en: 10.1038 / 211366a0.
  13. F. Bello, “Cultivos celulares de insectos: antecedentes, características, aplicaciones y aportes realizados en Colombia”, Memorias 40° Congreso Socolen, pp. 354-362, 2013.
  14. N. Beltrán & C. González, “Técnicas de cultivos celulares e ingeniería de tejidos”, 2016. ISBN 978-607-28-0688-7.
  15. R. Nardona, “Erradicación de líneas celulares con contaminación cruzada: un llamado a la acción. Biología celular y toxicología”, vol. 23, pp. 367–372, 2007. Disponible en: 10.1007/s10565-007-9019-9.
  16. J. Maurer, “Detección rápida y limitaciones de las técnicas moleculares”, Revista anual de ciencia y tecnología de los alimentos, vol. 2, pp. 259-279, 2011. Disponible en: https://doi.org/10.1146/annurev.food.080708.100730.
  17. C. Segeritz & L. Vallier, “Cell Culture: Growing Cells as Model Systems In Vitro”, Basic Science Methods for Clinical Researchers, pp. 151–172, 2017. Disponible en: https://doi.org/10.1016/B978-0-12-803077-6.00009-6.
  18. N. Segura, E. Santamaría, O. Cabrera, F. Bello, “Establecimiento y caracterización de una nueva línea celular derivada de Culex quinquefasciatus (Diptera: Culicidae)”, Memorias del Instituto Oswaldo Cruz, vol. 107, pp. 89-95, 2012. Disponible en: https://doi.org/10.1590/S0074-02762012000100013.
  19. M. Cruz & F. Bello “Características de cultivos celulares primarios derivados de Sarconesiopsis Magellanica (Le Guillou, 1842) (Diptera: Calliphoridae)”, Revista Actualidad & Divulgación Científica, vol. 15, pp. 313-321, 2012. Disponible en: ISSN 0123-4226.
  20. A. Olaya2017 “Introducción a los Cultivo celular para bioquímicos: tipos, medios y manipulación” Ed, Académica Española. 2017, pp. 110-125.
  21. W. Mckeehan, D. Barnes, L. Reid, E. Stanbridge, H. Murakami, G. Sato, “Frontiers in Mammalian Cell Culture”, Dev. Biol vol.26, pp. 9-23, 1990. Disponible en: https://www.jstor.org/stable/4296384.
  22. M. Tyrkus, C. Diglio, N. Gohle, “Karyotype evolution in a transformed rat cerebral endothelial cell line. International journal of cancer”, vol. 32, pp. 485–490, 1983. Disponible en: https://doi.org/10.1002/ijc.2910320416.
  23. Culture of animal cells a manual of basic technique, Ed. WILEY Blackwell (USA). R FRESHNEY R. 1987.
  24. W. Rowley, D. Dorsey, M. Knowles, “The replication of two California serogroup viruses in a cell line from the mosquito Aedes triseriatus (Diptera: Culicidae)”, Journal of medical entomology, vol.21, pp. 501-5,1984. Disponible en: 10.1093/jmedent/21.5.501.
  25. A. Ardila, J. Escobar, F. Bello, “Características de nuevos cultivos celulares derivados de tejidos embrionarios de Aedes aegypti (Diptera: Culicidae)” Biomédicas, vol. 25, pp. 65-75, 2005. Disponible en: https://doi.org/10.7705/biomedica.v25i1.1328.
  26. A. Herráez,“Biología molecular e ingeniería genética”, ELSEVIER, ed. Fotoletra S.A, 2012.
  27. I. Schkeider, “Establishment of three diploid cell lines of Anopheles stephensi (Diptera: Culicidae)”, Journal of Cell Biology, vol. 42, pp. 603- 606, 1969. Disponible en: 10.1083/jcb.42.2.603.
  28. C. Cadart, S. Monnier, J. Grilli, R. Attia, B. Terriac, L. Consentino, M. Piel, “Size control in mammalian cells involves modulation of both growth rate and cell cycle duration”, Nature Publishing Group, vol. 9, pp. 1-15, 2018. Disponible en: https://dx.doi.org/10.1038/s41467-018-05393-0.
  29. P. Echave, I. Conlon, A. Lloyd, “Cell size regulation in mammalian cells”, vol. 6, pp. 218-224, 2007. Disponible en: https://doi.org/10.4161/cc.6.2.3744.
  30. M. Pudney & M. Varma, “Anopheles stephensi var. mysorensis: Establishment of a Larval Cell Line (Mos. 43)”, epartment of Entomology, London School of Hygien and Tropical Medicine, vol. 29, pp.7-12, 1971.
  31. S. Athawale, A. Sudeep, P. Barde, R. Jadi R, T. Pant, A. Mishra, D. Mourya, “A new cell line from the embryonic tissues of Culex tritaeniorhynchus and its susceptibility to certain flaviviruses” Europe PMC, 2002. Disponible en: https://pubmed.ncbi.nlm.nih.gov/12693860/.
  32. R. Kuwata, K. Hoshino, H. Isawa, Y. Tsuda, S. Tajima, T. Sasaki, T. Takasaki, M. Kobayashi, K. Sawabe, “Establishment and characterization of a cell line from the mosquito Culex tritaeniorhynchus (Diptera: Culicidae)” In vitro cellular & developmental biology Animal, vol. 48, pp. 369-376, 2012. Disponible en: 10.1007/s11626-012-9520-1.
  33. Y. Gallo, L. Toro, H. Jaramillo, P. Gutiérrez, M. Marín, “Identificación y caracterización molecular del genoma completo de tres virus en cultivos de lulo (Solanum quitoense) de Antioquia (Colombia)”, Revista Colombiana de Ciencias Hortícolas, vol. 12, pp. 281-292, 2018. Disponible en: https://doi.org/10.17584/rcch.2018vl2i2.7692.
  34. M. Segretín, “Los cultivos celulares y sus aplicaciones I (cultivos de células animales”, Argen Bio, 2003.
  35. C. Montalván, A. Ortega, I. González, S. Mondaca, A. Meneses, “Animal cell culture in pharmaceutical biotechnology: research and perspectives”, Revista Mexicana de Ciencias Farmacéuticas, vol. 40, pp. 35-46, 2009. Disponible en: ISSN: 1870-0195.
  36. M. Palmero, “Cultivos celulares. Avances en Cultivos Celulares”, 2011.
  37. M. Drews, T. Paalme, R. Vilu, “The growth and nutrient utilization of the insect cell line Spodoptera frugiperda Sf9 in batch and continuous culture”, Revista de biotecnología, vol. 40, pp. 187-198, 1995. Disponible en: https://doi.org/10.1016/0168-1656(95)00045-R.
  38. N. Rubio, K. Fish, B Trimmer, D. Kaplan, “In Vitro Insect Muscle for Tissue Engineering Applications” ACS Ciencia e Ingeniería de Biomateriales, vol. 5, pp. 1071-1082, 2019. Disponible en: 10.1021/acsbiomaterials.8b01261
  39. K. Singh, “Cell cultures derived from larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.)” Current Science, vol. 36, pp. 506-508. 1967. Disponible en: https://www. jstor.org/estable/24062647.
  40. G. Kuno & A. Oliver, Maintaining mosquito cell lines at high temperatures: effects on the replication of
  41. flaviviruses. In vitro cellular & developmental biology: journal of the Tissue Culture Association, vol. 25, pp. 193-6, 1989. Disponible en: 10.1007/BF02626177.
  42. B. Cahoon, J. Hardy, W. Reeves, “Initiation and characterization of a diploid cell line from larval tissues of Aedes dorsalis (Meigen)” In Vitro, vol. 14, pp.255-260, 1978. Disponible en: https://doi.org/10.1007/BF02616034.
  43. M. Varma, M. Pudney, C. Leake, “Cell lines from larvae of Aedes (Stegomyia) malayensis Colless and Aedes pseudoscutellaris (Theobald) and their infection with some arbovirosis”, Trans R. Soc Trop. Med. Hyg, vol. 68, pp. 374-382, 1974. Disponible en: 10.1016/0035-9203(74)90152-7.
  44. D. Morier, S. López, I. Dámasa, M. Álvarez, L. Caballero, L. Mendoza, “Obtención de la sublínea celular CLA-HT. Estudio de su sensibilidad para el aislamiento y multiplicación de los virus del dengue”, Revista Cubana de Medicina Tropical, vol. 66, pp. 424-432, 2014. Disponible en: ISSN 0375-0760.
  45. F. Bello, J. Boshell, G. Rey, A. Morales, V. Olano, “Initiation of primary cell cultures from embryos of the mosquitoes Anopheles albimanus and Aedes taeniorhynchus (Diptera: Culicidae)”, Mem Inst Oswaldo Cruz, vol. 90, pp. 547-551, 1995. Disponible en: https://doi.org/10.1590/S0074-02761995000400024.
  46. U. Pant, D. Mourya, A. Sudeep, K. Banerjee, V. Dhanda, “Nueva línea celular embrionaria from Aedes krombeini (H.) (diptera: Culicidae), Biología In Vitro Celular y del Desarrollo - Animal, vol. 28 pp. 567–568, 1992. Disponible en: 10.1007 / BF02631022.
  47. M. Oelofsen, A. Gericke, M. Smith, Van Der Linde, “Establishment and Characterization of a Cell Line from the Mosquito Culex theileri (Diptera: Culicidae) and Its Susceptibility to Infection with Arboviruses”, J. Med. Entomol, vol. 27, pp. 939-944, 1990. Disponible en: ISSN: 0022-2585.
  48. S. Hsu, W. Mao, J. Cross, “Establishment of a line of cells derived from ovarian tissue of culex quinquefasciatus”, J. Med. Ent, vol. 7, pp. 703-707, 1970. Disponible en: https://doi.org/10.1093/jmedent/7.6.703.
  49. F. Bello, H. Brochero, J. Boshell, V. Olano, G. Rey, “Establishment and characterization of a cell line from mosquito Anopheles albimanus (Diptera: Culicidae)”, Mem. Do Inst. Oswaldo Cruz, vol. 92, pp. 123-128, 1997. Disponible en: 10.1590/s0074-02761997000100027.
  50. Z. Marhoul & M. Pudney, “A Mosquito Cell Line (Mos. 55) From Anopheles Gambiae Larvae”, London School of Hygiene and Tropical Medicine, vol. 66, pp. 183-184, 1972. Disponible en: 10.1016/0035-9203(72)90068-5.
  51. R. Tesh & G. Modi, “Development of a continuous cell line from the sand-fly Lutzomyia longipalpis (Diptera: Psychodidae), and its susceptibility to infection with arboviruses”, J Med Entomol, vol. 20, pp. 199-202, 1983. Disponible en: https://doi.org/10.1093/jmedent/20.2.199.
  52. G. Rey, C. Ferro, F. Bello, “Establishment and Characterization of a New Continuous Cell Line from Lutzomyia longipalpis (Diptera: Psychodidae) and its Susceptibility to Infections with Arboviruses and Leishmania chagasi”, Mem Inst Oswaldo Cruz, vol. 95, pp. 103-110, 2000. Disponible en: 10.1590/s0074-02762000000100017.
  53. A. Zapata, E. Cárdenas, F. Bello, “Characterization of cell cultures derived from Lutzomyia spinicrassa (Diptera: Psychodidae) and their susceptibility to infection with Leishmania (Viannia) braziliensis” Med. Sci. Monit, vol. 11, pp. 457-464), 2005. Disponible en: PMID: 16319783.
  54. F. Bello, M. Jimenez, C. Ferro, “Primary cell cultures of Lutzomyia shannoni (Diptera: Psychodidae) and preliminar study karyotypes of the species”, biomédica, vol. 17, pp. 49-55, 1997. Disponible en: DOI: https://doi.org/10.7705/biomedica.v17i1.925.
  55. F. Bello, J. Rodríguez, J. Escovar, V. Olano, A. Morales, M. González, “A new continuous cell line from the mosquito Psorophora confinnis (Diptera: Culicidae) and its susceptibility to infections with arboviruses”, Mem Inst Oswaldo Cruz, vol. 96, pp. 865-873, 2001. Disponible en: 10.1590/s0074-02761997000100027
  56. L. Echeverry, A. Zapata, N. Segura, F. Bello, “Estudio de cultivos celulares primarios derivados de Lucilia sericata (Diptera: Calliphoridae)”, Rev. Ciencia. Salud, vol. 7, pp. 17-28, 2009. Disponible en: ISSN 2145-4507.
  57. Takahashi, Masakazu, Mitsuhashi, Ohtaki, Tetsuya, “Establishment of a cell line from embryonic tissues of the fleshfly, Sarcophaga peregrina (Insecta: Diptera)” Development, Growth & Differentiation., vol. 22, pp. 11 – 19, 1980. Disponible en: 10.1111/j.1440-169X.1980. 00011.x.
  58. I Pinillos, “Establecimiento y caracterización de una línea celular derivada de tejidos embrionarios de la mosca Calliphora vicina Diptera: Calliphoridae”, Tesis maestría, Universidad de la Salle, 2020. Disponible en: https://ciencia.lasalle.edu.co/maest_ciencias_veterinarias/84.
  59. L. Zheng, J. Li, Q. Yu, B. Zhang, X. Ding, H. Li, H. Zhou, F. Wan, C. Li, “Establishment and characterization of the Bactrocera dorsalis (Diptera: Tephritidae) embryonic cell line QAU-Bd-E-2”, developmental biology, vol. 57, pp. 735–741, 2021. Disponible en: https://doi.org/10.1007/s11626-021-00619-w.
  60. L. Bell, M. Fauziah, M. Baptiste, L. Luu, E. Denison, S. Carpintero, A. Houssam, P. Mertens, “Líneas celulares continuas del mosquito mordedor europeo Culicoides nubeculosus (Meigen, 1830)”, Microorganismos, 2020. Disponible en: https://doi.org/10.3390/microorganismos8060825.
  61. A. Harrison, I. Rae, “General techniques of cell culture” Handbooks in practical animal cell biology, vol. 523, 1997.
  62. Animal Cell Culture A Practical Approach, Third edition. J MASTERS, 2001.
  63. STRYER L. 2015. Bioquímica. Reverté.
  64. E. Acosta, v. Castilla, E. Damonte, “Infectious dengue-1 virus entry into mosquito C6/36 cells”, Virus Res, vol. 160, pp. 173-179, 2011. Disponible en: 10.1016/j.virusres.2011.06.008.
  65. E. Acosta, V. Castilla, E. Damonte, “Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis “, The Journal of general Virology, vol. 89, pp. 474–484, 2008. Disponible en: https://doi.org/10.1099/vir.0.83357-0.
  66. A. Juárez, T. Vega, M Salas, M. García, M. De Nova, R. Ángel, B. Salas, “Detection and sequencing of defective viral genomes in C6/36 cells persistently infected with dengue virus 2”, Archives of Virology, vol. 158, pp. 583–599, 2012. Disponible en: 10.1007/s00705-012-1525-2.
  67. G. Pialoux, B. Gauzere, S. Jaureguiberry, M. Strobel, “Chikungunya an epidemic arbovirosis”, Las enfermedades infecciosas de Lancet, vol. 5, pp. 319-327, 2007. Disponible en: https://doi.org/10.1016/S1473-3099(07)70107-X.
  68. Instituto de Medicina Tropical “Pedro Kourí” Ministerio de Salud Pública [online] “Técnicas de laboratorio para el diagnóstico y la caracterización de los virus del Dengue”, Laboratorio de arbovirus departamento de virología centro colaborador de la OPS/OMS para el estudio del dengue y su vector, La Habana- Cuba 2009, https://www.paho.org/hq/dmdocuments/2011/Protocolos_Dengue_IPK_2009_I.pdf.
  69. N. Segura & f. Bello, “Comparative assessment of the replication efficiency of dengue, yellow fever, and chikungunya arboviruses in some insect and mammalian cell lines”, Revista da Sociedad Brasileira de Medicina Tropical. Journal of the Brazilian Society of Tropical Medicine, vol. 52, 2018. Disponible en: https://doi.org/10.1590/0037-8682-0511-2018.
  70. N. Castañeda, J. Castellanos, A. Zapata, F. Bello, “Línea celular de Aedes aegypti (Diptera: Culicidae) AEGY-28 refractaria a la infección con los virus dengue 2 y fiebre amarilla” Acta biológica, vol.12, pp. 47 – 58, 2007. Disponible en: <http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120548X2007000200004&lng=en&nrm=iso>. ISSN 0120-548X.
  71. M. Contreras & S. Uribe, (2014). “Lista actualizada de flebotomíneos (Diptera: Psychodidae: Phlebotominae) de la región cafetera colombiana”, Biomédica, vol. 34, pp. 483-498, 2014. Disponible en: https://doi.org/10.7705/biomedica.v34i3.2121.
  72. M. Gendrin, & G. Christophides, “The Anopheles mosquito microbiota and their impact on pathogen transmission, Anopheles mosquitoes new insights into malaria vectors” 2013.Disponible en: 10.5772/55107.
  73. B. Longdon, M. Brockhurst, C. Russell, J. Welch, F. Jiggins “The Evolution and Genetics of Virus Host Shifts”, PLoS Pathogens, vol. 10, 2014. Disponible en: https://doi.org/10.1371/journal.ppat.1004395.
  74. V. Stollar, & V. Thomas, “Un agente en la línea celular de Aedes aegypti (Peleg) que causa la fusión de las células de Aedes albopictus”, Virology, vol. 64, pp. 367–377, 1975. Disponible en: 10.1016/0042-6822(75)90113-0.
  75. G. Zhang, S. Asad, A. Khromykh, S. Asgari, “Cell fusing agent virus and dengue virus mutually interact in Aedes aegypti cell lines”, Sci Rep, vol. 7, 2017 Disponible en: https://doi.org/10.1038/s41598-017-07279-5.
  76. A. Baidaliuk, E. Miot, S. Lequime, I. Moltini-Conclois, F.Delaigue, S. Dabo, L. Dickson, F. Aubry, S. Merkling, V. Cao-Lormeau, L. Lambrechts, “Cell-Fusing Agent Virus Reduces Arbovirus Dissemination in Aedes aegypti Mosquitoes In Vivo”, J Virol, vol. 93, 2019. Disponible en: 10.1128/JVI.00705-19.
  77. M. Crabtree, R. Sang, V. Stollar, L. Dunster, B. Miller, “Genetic and phenotypic characterization of the newly described insect flavivirus, Kamiti River virus”, Springer, Arch Virol, vol. 148, 6, pp. 1095-1118, 2003. Disponible en: https://doi.org/10.1007/s00705-003-0019-7.
  78. M. Crabtree, P. Nga, B. Miller, “Isolation and characterization of a new mosquito flavivirus”, Quang Binh virus, vol. 154, pp. 857-860, 2009. Disponible en: 10.1007/s00705-009-0373-1.
  79. S. Cook, G. Moureau, E. Harbach, L. Mukwaya, K. Goodger, F. Ssenfuka, E. Gould, E. Holmes, X. Lamballerie, “Aislamiento de una nueva especie de flavivirus y una nueva cepa de Culex flavivirus (Flaviviridae) de una población natural de mosquitos en Uganda”, J Gen Virol, vol. pp. 2669-2678, 2009. Disponible en: 10.1099/vir.0.014183-0.
  80. Bolling B; Eisen L; Moore C; Blair C. (2011). Flavivirus específicos de insectos de los mosquitos Culex en Colorado con evidencia de transmisión vertical. Am J Trop Med Hyg. 85 (1) (p. 169-177). Disponible en: 10.4269/ajtmh.2011.10-0474.
  81. S. Tyler, B. Bolling, C. Blair, A. Brault, K. Pabbaraju, M. Armijos, D. Clark, C. Calisher, M. Drebot, “Distribution and phylogenetic comparisons of a novel mosquito flavivirus sequence present in Culex tarsalis Mosquitoes from western Canada with viruses isolated in California and Colorado”, Am J Trop Med Hyg, vol. 85, pp. 162-168, 2011. Disponible en: 10.4269/ajtmh.2011.10-0469.
  82. L. Peng, B. Guowu, X. Pan, X. Zhiyong, “Wolbachia induces density-dependent inhibition of dengue virus in mosquito cells”, PLOS ONE, vol. 6, 2012. Disponible en: https://doi.org/10.1371/journal.pntd.0001754.
  83. L. Chouin, T. Ant, C. Herd, F. Louis, A. Failloux, S. Sinkins S, “Wolbachia Strain wAlbA bloquea la transmisión del virus Zika en Aedes Aegypti”. Medicina Veterinario. Entomol, vol. 34, pp. 116-119, 2020. Disponible en: 10.1111/mve.12384.
  84. L. Moreira, I. Iturbe, J. Jeffery, G. Lu, A. Pyke, L. Hedges, C. Bruno, H. Sonja A. Day, M. Riegler, L. Hugo, K. Johnson, B. Kay, E. Mcgraw, A. Hurk, P. Ryan, S. O´Neill, “Un simbionte de Wolbachia en Aedes Aegypti limita la infección por dengue, chikungunya y plasmodio”, vol. 139, pp. 1268–1278, 2009. Disponible en: 10.1016/j.cell.2009.11.042.
  85. V. Geoghegan, K. Stainton, S. Rainey, T. Hormiga, A. Dowle, T. Larson, S. Hester, F. Carlos, B. Tomas, S. Sinkins, “Perturbed cholesterol and vesicular trafficking associated with dengue blocking in Wolbachia-infected Aedes aegypti cells”, vol.8, pp.526, 2017. Disponible en: 10.1038/s41467-017-00610-8.
  86. S. Asad, M. Hussain, L. Hugo, S. Osei-Amo, G. Zhang, D. Watterson, S. Asgari, “Suppression of the pelo protein by Wolbachia and its effect on dengue virus in Aedes aegypti” Tropa desatendida de PloS, vol. 12, pp.4, 2018. Disponible en: 10.1371/journal.pntd.0006405.
  87. J. Fraser,T. O'donnell J. Duyvestyn, S. O'neill, C. Simmons, H. Flores, “Novel phenotype of Wolbachia strain wPip in Aedes aegypti challenges assumptions on mechanisms of Wolbachia-mediated dengue virus inhibition”, Patog de PloS, vol. 16, 2020. Disponible en: 10.1371/journal.ppat.1008410.
  88. C. Koh, M. Islam, Y. Ye, N. Chotiwan, B. Graham, J. Belisle, A. Konstantinos, S. Dayalan, D. Tull, S. Klatt, R. Perera, E. Mcgraw, “Dengue virus dominates lipid metabolism modulations in Wolbachia-coinfected Aedes aegypti” Biology communications, vol. 3, p. 1–14, 2020. Disponible en: 10.1038/s42003-020-01254-z.
  89. G. Manokaran, H. Flores, C. Dickson, V. Narayana, K. Kanojia, S. Dayalan S; D. Tull, J. Malcolm, J. Mackenzie, C. Simmons, “Modulation of acyl-carnitines, the broad mechanism behind Wolbachia-mediated inhibition of medically important flaviviruses in Aedes aegypti”, PNAS, vol. 117, pp. 24475–24483, 2020. Disponible en: 10.1073/pnas.1914814117.
  90. G. Haqshenas, G. Terradas, P. Paradkar, J. Duchemin, E. Mcgraw, C. Doerig, “A Role for the Insulin Receptor in the Suppression of Dengue Virus and Zika Virus in Wolbachia-Infected Mosquito Cells”, Cell Rep, vol. 26, pp. 529–535, 2019. Disponible en: 10.1016/j.cellrep.2018.12.068.
  91. S. Ford, I. Albert, S. Allen, S. Chenoweth, M. Jones, C. Koh, A. Sebastian, L. Single, E. Mcgraw, “Artificial Selection Finds New Hypotheses for the Mechanism of Wolbachia-Mediated Dengue Blocking in Mosquitoes”, Microbiol, vol. 11, pp. 1456. Disponible en: 10.3389/fmicb.2020.01456.
  92. P. Lu, Q. Sun, P. Fu, K Li, X. Liang, Z. Xi, “Wolbachia Inhibits Binding of Dengue and Zika Viruses to Mosquito Cells”, Frontiers Microbiol, vol. 11, pp. 1750, 2020. Disponible en: 10.3389/fmicb.2020.01750.
  93. Word Mosquito Program (WMP), “Avances a Nivel Mundial”, 2022. Disponible en: https://www.worldmosquitoprogram.org/es/avances-nivel-mundial/colombia.
  94. M. Nawa, “Effects of bafilomycin A1 on Japanese encephalitis virus in C6/36 mosquito cells”, Archives of Virology, vol. 143, pp. 1555-1568, 1998. Disponible en:10.1007/s007050050398.
  95. K. Bullard, J. Govero, Z. Zhu, V. Salazar, M. Veselinovic, M. Diamond, B. Geiss, “The FDA-approved drugsofosbuvir inhibits Zika virus infection” Antivir, vol. 137, pp. 134–140, 2018. Disponible en: 10.1016/j.antiviral.2016.11.023.
  96. H. Xu, S. Colby-Germinario, S. Hassounah, C. Fogarty, N. Osman, N. Palanisamy, Y. Han, M. Oliveira, Y. Quan, M. Wainberg, “Evaluation of Sofosbuvir (beta-D-20-deoxy-20-alpha-fluoro-20-beta-C-methyluridine) as an inhibitor of Dengue virus replication”, Sci. Rep, vol. 7, pp. 1–11, 2017. Disponible en: https://doi.org/10.1038/s41598-017-06612-2.
  97. C. Freitas, L. Higa, C. Sacramento, A. Ferreira, P. Reis, R. Delvecchio, F. Monteiro, G. Barbosa-Lima, H. Westgarth, Y. Vieira, M. Mattos, N. Rocha, L. Villas, R. Papaleo, M. Bastos, G. Rodríguez, C. Lopes, C. Queiroz, C. Lima, V. Costa, M. Teixeira, F. Boza, P. Bozza, N. Boechat, A. Tanuri, T. Souza, “Yellow fever virus is susceptible to sofosbuvir both in vitro and in vivo”, PLoS Negl. Trop, 2019. Disponible en: 10.1371/journal.pntd.0007072
  98. C. Gan, S. Lim, C. Chee, R. Yusof, C. Heh, “Sofosbuvir as treatment against dengue Chem”, Biol. Drug. Des, vol.91, pp.448–455, 2018. Disponible en: https://doi.org/10.1111/cbdd.13091.
  99. A. Ferreira, P, Reis, C. De Freitas, C. Sacramento, LHoelz, M. Bastos, M. Mattos, N. Rocha, I. Quintanilha, C. Pedrosa, L. Quintino, E. Correia, P. Trindade, Y. Rangel, G. Barbosa, H. Castro, N. Boechat, S. Rehen, K. Bruning, F. Boza, P. Bozza, T. Souza “Beyond Members of the Flaviviridae Family, Sofosbuvir Also Inhibits Chikungunya Virus Replication”, Antimicrob. Agents Chemother, vol. 63, 2019. Disponible en: 10.1128/AAC.01389.
  100. I. Albulescu, M. Van Hoolwerff, L. Wolters, E. Bottaro, C. Nastruzzi, S. Yang, S. Tsay, J. Hwu, E. Snijder M. Van Hemert, “Suramin inhibits chikungunya virus replication through multiple mechanisms”, Antivir. Res, vol. 121, pp. 39–46, 2015. Disponible en: https://doi.org/10.1016/j.antiviral.2015.06.013.
  101. I. Albulescu, K. Kovacikova, A. Tas, E. Snijder, M. Van Hemert, “Suramin inhibits Zika virus replication by interfering with virus attachment and release of infectious particles”, Antivir. Res, vol. 143, pp. 230–236, 2017. Disponible en: https://doi.org/10.1016/j.antiviral.2017.04.016.
  102. S. Dong & G. Dimopoulos, “Compuestos antivirales para bloquear la transmisión arboviral en mosquitos”, Virus, vol. 13, pp. 108-111, 2021. Disponible en: 10.3390/v13010108.
  103. D. Hultmark, H. Steiner, T. Rasmuson, H. Boman, “Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia”, Eur J Biochem, vol.106, pp. 7–16, 1980. Disponible en: 10.1111/j.1432-1033.1980.tb05991.x.
  104. M. Meister, B. Lemaitre, J. Hoffmann, “Defensa peptídica antimicrobiana en Drosophila”, BioEssays, vol. 19, pp. 1019–1026, 1997. Disponible en: 10.1002/bies.950191112.
  105. Yi, Hy, M. Chowdhury, Y. Huang, “Péptidos antimicrobianos de insectos y sus aplicaciones”, Appl Microbiol Biotechnol, vol. 98, pp. 5807–5822, 2014. Disponible en: https://doi.org/10.1007/s00253-014-5792-6.
  106. K. Matsuyama & S. Natori, “Molecular cloning of cDNA for sapecin and unique expression of the sapecin gene during the development of Sarcophaga peregrina”, J Biol Chem, vol. 263, pp. 17117–17121, 1988. Disponible en: PMID: 3182837.
  107. W. Cho, Y. Fu, C. Chen, C. Ho “Cloning and characterization of cDNAs encoding the antibacterial peptide, defensin A, from the mosquito, Aedes aegypti” Insect Biochem Mol Biol, vol. 26, pp. 395–402, 1996. Disponible en: https://doi.org/10.1016/0965-1748(95)00108-5.
  108. S. Cociancich, A. Ghazi, C. Hetru, J. Hoffmann, L. Letellier, “Insect defensin, an inducible antibacterial peptide, forms voltagedependent channels in Micrococcus luteus”, J Biol Chem, vol. 268, pp. 19239–19245, 1993. Disponible en: PMID: 7690029.
  109. R. Maget & M. Ptak, “Penetration of the insect defensin A into phospholipid monolayers and formation of defensin A-lipid complexes”, Biophys J, vol. 73, pp. 2527–2533, 1997. Disponible en: 10.1016/S0006-3495(97)78281-X.
  110. S. Mahmoud, L. Khashab, W. Moselhy, A. Zayed, M. Salama, “Actividad anticancerígena in vitro de la hemolinfa larval y el cuerpo graso de la mosca de la carne Sarcophaga argyrostoma (Diptera: Sarcophagidae)”, Avances en Entomología, vol. 8, pp. 93-105, 2020. Disponible en: https://doi.org/10.4236/ae.2020.82007.
  111. Y. Yakovlev, P. Nesin, P. Simonenko, A. Gordya, V. Tulin, A. Kruglikova, S. Chernysh, “Fat body and hemocyte contribution to the antimicrobial peptide synthesis in Calliphora vicina R.D. (Diptera: Calliphoridae) larvae”, In Vitro Cellular & Developmental Biology Animal, vol. 53, pp. 33–42, 2016. Disponible en: 10.1007/s11626-016-0078-1.
  112. F. Bello, A. Mejía, M. Corena, M. Ayala, L. Sarmiento, C. Zúñiga, M. Palau, “Experimental infection of Leishmania (L) chagasi in a cell line derived from Lutzomyia longipalpis (Diptera: Culicidae)”, Mem. Do Inst. Oswaldo Cruz, vol. 100, pp. 519-525, 2005. Disponible en: https://doi.org/10.1590/S0074-02762005000600004.
  113. J. Sánchez, J. Cañola, J. Molina, N. Bejarano, A. Vélez, I. Vélez, S. Robledo, “Ecoepidemiología de la leishmaniasis visceral en Colombia”, vol. 11, pp. 1943-2019, 2020. Disponible en: https://doi.org/10.17533/udea.hm.v11n1a03.
  114. E. Prina, S. Abdi, M. Lebastard, E. Perret, N. Winter, J. Antoine, “Células dendríticas como células huésped para las etapas de promastigote y amastigote de Leishmania amazonensis: el papel de las opsoninas en la captación de parásitos y la maduración de células dendríticas”, J Cell Sci, vol. 15, pp. 315-325, 2004. Disponible en: 10.1242/jcs.00860.
  115. Miranda A; Sarmiento L; Caldas M; Zapata C; Bello F. (2008). Morfología y citoquímica de cultivos celulares de Aedes aegypti (Diptera: Culicidae) y susceptibilidad a Leishmania panamensis (Kinetoplastida: Trypanosomatidae). Revista de Biología Tropical. (56) (p. 447-458). Disponible en: ISSN 0034-7744.
  116. V. Acero, E. Galeano, M. Ayala, J. Castellanos, F. Bello, “Interacción de Leishmania (L) chagasi con la línea celular Lulo en diferentes condiciones ambientales”, Revista Colombiana de Entomología, vol. 32, pp. 165-171, 2006. Disponible en: ISSN 2665-4385.
  117. L. Côrtes, R. Silva, B. Pereira, C. Guerra, A. Zapata, F. Bello, L. Finkelstein, M. Maderia, C. Real, C. Alves, “Línea celular Lulo derivada de Lutzomyia longipalpis (Diptera: Psychodidae): un nuevo modelo para analizar Leishmania spp. e interacción vectorial. Parásitos y vectores”, vol. 4, pp. 1-5, 2011. Disponible en: https://doi.org/10.1186/1756-3305-4-216.
  118. L. Côrtes, D. Pita-Pereira, P. Farani, B. Pereira, G. Dias, F. Silva, P. Resende, R Silva, S. Corte, F. Bello, L. Lima, O. Cruz, M. Caldas, C. Alves, (2020). “Información sobre el perfil proteómico y la expresión génica de la línea celular Lulo derivada de Lutzomyia longipalpis” Memorias del Instituto Oswaldo Cruz, vol. 115, 2020. Disponible en: https://doi.org/10.1590/0074-02760200113.
  119. M. Acuña, B. Cortés, M. Vargas, N. Segura, F. Bello, “Caracterización citogenética de Lucilia sericata (Meigen, 1826) (Diptera: calliphoridae), Cepa Bogotá, Colombia”, Rev. Cienc. Salud, vol. 9, pp. 111-114, 2011. Disponible en: ISSN 2145-4507.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.