Skip to main navigation menu Skip to main content Skip to site footer

Effect of irrigation regime on the production of volatiles that affect the aroma of the pear variety Triumph of Vienna (Pyrus communis L.)

Fruit of pear (Pyrus communis L.) var. Triumph of Vienna.  Photo: J.E. Vélez

Abstract

Water is a major component of plants that directly and indirectly affects physiological processes. One of the consequences of a hydric deficit in the pear fruit is modification of the aroma. No information exists on the effect of a water deficit on the sensory profile and volatile composition of this species. The objective was to determine the production of volatiles in the harvest and post-harvest of pear var. Triumph of Vienna (Pyrus communis L.) with regulated deficit irrigation (RDI). The irrigation treatments consisted of the application of water regimes that were 100 (Control), 74 and 48% of the ETc during the rapid fruit growth period. The rest of the season plants were irrigated at 100%ETc. In the deficit treatments, there were no significant reductions with respect to the control in the quality of the fruits, obtaining a water savings in 74 and 48%ETc of 26 and 40%, respectively. The esters were the volatile compounds that contribute greatly to aroma, which increased steadily during the climacteric phase. Under the limited water conditions, watering with regulated, deficit doses obtained production that was similar to that of well-watered crops, provided that it was carried out in the phenological stage of low sensitivity and that the tolerance limits of stress were not exceeded.

Keywords

Post-harvest, Solid phase micro extraction, Volatile compounds, Water deficit, Ripening, Esters

PDF

References

  1. Agronet, Red de Información y Comunicación del Sector Agropecuario Colombiano. 2019. Área, producción y rendimiento por cultivo. In: Ministerio de Agricultura y Desarrollo Rural, https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1; consulted: December, 2019.
  2. Allen, R.G., L.S. Pereira., D. Raes, and M. Smith. 1998. Crop evapotranspiration, guidelines for computing crop water requirements. Irrigation and Drainage Paper 56. FAO, Roma.
  3. Altisent, R., J. Graell., I. Lara, L. López, and G. Echeverria. 2011. Comparison of the volatile profile and sensory analysis of ‘Golden Reindeers’ apples after the application of a cold air period after ultralow oxygen (ULO) storage. J. Agric. Food Chem. 59, 6193-6201. Doi: https://doi.org/10.1021/jf2005029
  4. Andreu-Coll, L., L. Noguera-Artiaga, A. Carbonell-Barrachina, P. Legua, and F. Hernández. 2020. Volatile composition of prickly pear fruit pulp from six Spanish cultivars. J. Food Sci. 85(2), 358-363. Doi: https://doi.org/10.1111/1750-3841.15001
  5. Bangerth, F.K., J. Song, and J. Streif. 2012. Physiological impacts of fruit ripening and storage conditions on aroma volatile formation in apple and strawberry fruit. HortScience. 47, 4-10. Doi: https://doi.org/10.21273/HORTSCI.47.1.4
  6. Bhavadharani, R.K., V, Nagarajan, and R. Chandiramouli. 2019. Silicene nanosheet to discriminate the quality of pear fruit based on volatiles adsorption ---a DFT application. Condens. Matter Phys. 22(3), 33001. Doi: https://doi.org/10.5488/CMP.22.33001
  7. Cano-Lamadrid, M., A., Galindo, J. Collado-Gonzáles, P. Rodriguez, Z.C. Cruz, P. Legua, F. Burló, D. Morales, A. Carbonell-Barrachina, and F. Hernández. 2018. Influence of deficit irrigation and crop load on the yield and fruit quality in Wonderful and Mollar de Elche pomegranates. J. Sci. Food Agr. 98, 3098-3108. Doi: https://doi.org/10.1002/jsfa.8810
  8. Cano-Lamadrid, M., L, Lipan., F, Hernández., J. J, Martínez., P, Legua., A. Carbonell-Barrachina, and P, Melgarejo. 2018. Quality parameters, volatile composition, and sensory profiles of highly endangered spanish citrus fruits. J. Food Qual. 2018, 3475461. Doi: https://doi.org/10.1155/2018/3475461
  9. Galindo, A., A. Calín-Sánchez., I. Griñan., P. Rodríguez., Z.N. Cruz., I. F. Girón., M. Corell., R. Martínez-Font., A. Moriana., A. Carbonell-Barrachina., A. Torrecillas, and F. Hernández. 2017. Water stress at the end of the pomegranate fruit ripening stage produces earlier harvest and improves fruit quality. Sci. Hortic. 226, 68-74. Doi: https://doi.org/10.1016/j.scienta.2017.08.029
  10. Griñan, I., A. Galindo., P. Rodríguez., D. Morales., M. Corell., J. Centeno., J. Collado-Gonzales., A. Torrecillas., A. Carbonell-Barrachina, and F. Hernandez. 2019. Volatile composition and sensory and quality attributes of quince (Cydonia oblonga Mill.) fruits as affected by water stress. Sci. Hort. 244, 68-74 Doi: https://doi.org/10.1016/j.scienta.2018.09.013
  11. IGAC, Instituto Geográfico Agustín Codazzi. 2010. Clasificación de suelos en el departamento de Cundinamarca. Universidad Tecnológico y Pedagógica de Colombia, Departamento Nacional de Estadística; IGAC subdirección de Agrología 169, 325-327.
  12. Li, G., H. Jia., R. Wu., S. Hussain, and Y. Teng. 2012. Characterization of aromatic volatile constituents in 11 Asian pear cultivars belonging to different species. Afr. J. Agric. 7, 4761-4770. Doi: https://doi.org/10.5897/AJAR12.563
  13. Li, G., H. Jia., R. Wu, and Y. Teng. 2013. Changes in volatile organic compound composition during the ripening of ‘Nanguoli’ pears (Pyrus ussuriensis M.) harvested at different growing locations. J. Hortic. Sci. Biotechnol. 88 (5), 563-570. Doi: https://doi.org/10.1080/14620316.2013.11513007
  14. Li, G.P., J.H. Jia., Q. Li., M.J. Wang, and Y.W. Zhang. 2014. Emission of volatile esters and transcription of ethylene- and aroma-related genes during ripening of ‘Pingxiangli’ pear fruit (Pyrus ussuriensis M.). Sci. Hortic. 170, 17-23. Doi: https://doi.org/10.1016/j.scienta.2014.03.004
  15. Miranda, D., G. Fischer, and C. Carranza. 2013. Los frutales caducifolios en Colombia. Sociedad Colombiana de Ciencias Hortícolas, Bogotá.
  16. Morandi, B., P. Losciale., L. Manfrini., M. Zibordi., S. Anconelli., F. Galli., E. Pierpaoli, and L. Corelli. 2014. Increasing water stress negatively effects pear fruit growth by reducing first its xylem and then its phloem inflow. J. Plant Physiol. 171(16), 1500-1509. Doi: https://doi.org/10.1016/j.jplph.2014.07.005
  17. SAFC. 2011. SAFC Flavors and fragrances catalog. Sigma-Aldrich, Madrid.
  18. SAS Institute. 2010. Statistical analysis system version 8 for Windows Inc. Cary, NC.
  19. Sevilla, A., A. Carbonell., J. López, and F. García. 2011. Comparative effect of the addition of α-, β-, or γ-cyclodextrin on main sensory and physico–chemical parameters. J. Food Sci. 76(5), 347-353. Doi: https://doi.org/10.1111/j.1750-3841.2011.02190.x
  20. Stashenko, E, and J. Martínez. 2011. Preparación de la muestra: un paso crucial para el análisis y GC-MS. Scientia Chromatographica 3(1), 25-49. Doi: https://doi.org/10.4322/sc.2011.003
  21. UNESCO, United Nations Educational, Scientific and Cultural Oorganization. 2015. Science Report: towards 2030. Executive Summary. 2015. Water for a sustainable world the United Nations world water development report.
  22. Verzera, A., G. Dima., G. Tripodi., M. Ziino., C. Lanza, and A. Mazzaglia. 2011. Fast quantitative determination of aroma volatile constituents in melon fruits by headspace–solid-phase microextraction and gas chromatography–mass spectrometry. Food Analytical Methods. 4, 141-149. Doi: https://doi.org/10.1007/s12161-010-9159-z
  23. Wang, M. Y., E. Macrae., M. Wohlers, and K. Marsh. 2011. Changes in volatile production and sensory quality of kiwifruit during fruit maturation in Actinidia deliciosa ‘Hayward’ and A. chinensis ‘Hor 100%ETc6A’. Postharvest Biol. Technol. 59, 16–24. Doi.org/10.1016/j.postharvbio.2010.08.010
  24. Yanine, A.G., L. García., C.J.R. Pérez., V.C. Lopez., I. Orriols, and F. Lopez. 2013. Aromatically enhanced pear distillates from Blanquilla and Conference varieties using a packed column. J. Agric. Food Chem. 61(20), 493-4942. Doi: https://doi.org/10.1021/jf304619e
  25. Zhou, X., L. Dong., Q. Zhou., J. Wang., N. Chang., Z. Liu, and S. Ji. 2015. Effects of intermittent warming on aroma-related esters of 1-methyllcyclopropenetreated ‘Nanguo’ pears during ripening at room temperature. Sci. Hortic. 185, 82-89. Doi: https://doi.org/10.1016/j.scienta.2015.01.021
  26. Zlatic, E., V. Zadnikb., J. Fellmanc., L. Demsara., J. Hribara., Z. Cejíc, and R. Vidrih. 2016. Comparative analysis of aroma compounds in ‘Bartlett’ pear in relation to harvest date, storage conditions, and shelf life. Postharvest Biol. Technol. 117, 71-80. Doi: https://doi.org/10.1016/j.postharvbio.2016.02.004

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.