Base temperature for a phenological stage in plum cultivar Horvin (Prunus salicina Lindl.)


  • Mayerlin Orjuela-Angulo Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ingeniería, Departamento de Ingeniería Civil y Agrícola, Bogota
  • Alfonso Parra-Coronado Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ingeniería, Departamento de Ingeniería Civil y Agrícola, Bogota
  • Jesús Hernán Camacho-Tamayo Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ingeniería, Departamento de Ingeniería Civil y Agrícola, Bogota



Growing degree days, Stone fruit, Growth models, Mountain climate


The plum (Prunus salicina Lindl.) is affected by the amount of water provided by its environment, as conditioned by climatic factors, especially temperature. Fruit development, in terms of physiological time or growing degree-days (GDD), is more accurate than quantification in terms of crop scheduling dates. The objective of this research was to determine the base temperature (Tb) of the phenological period between fruit set and harvest in Horvin plums and to express this duration in terms of GDD to determine the harvest date. Twenty trees were marked per locality at four different altitudes (2,449; 2,285; 2,215 and 2,195 m) in the municipality of Nuevo Colon, Boyaca. During 2015 and 2016, the dates of fruit set and harvest were recorded. Tb was estimated using different methods, as well as the GDD required to go from fruit set to harvest. The variance showed the best statistical fit between coefficient of variation and standard deviation for estimating Tb, with a high degree of correlation. The Tb for this phenological period was 2.9ºC. The results showed that a mean of 1,528 GDD and 81 days were required to pass from fruit set to fruit harvest.


Download data is not yet available.


Akbar, S.A. 2019. Evaluation of antioxidant activity on plum fruit (Prunus domestica L.) skin extract applied for natural acid-base indicator. Elkawnie: J. Islamic Sci. Technol. 5(1), 21-29. Doi:

Anchico-Jojoa, W., J.R. Peixoto, C.R. Spehar, and M.S. Vilela. 2021. Calculation of the thermal units for 13 codes of the BBCH scale of 12 progenies of quinoa in the growing conditions of the Brazilian savanna. Rev. Colomb. Cienc. Hortic. 15(3), e13109. Doi:

Cepeda M., A., J.E. Vélez-Sánchez, and H.E. Balaguera-López. 2021. Analysis of growth and physicochemical changes in apple cv. Anna in a high-altitude tropical climate. Rev. Colomb. Cienc. Hortic. 15(2), e12508. Doi:

Criollo-Escobar, H., M.-F. Moncayo-Palacios, and T.C. Lagos-Burbano. 2020. Phenology and growth of lulo (Solanum quitoense Lam) plants grafted onto Solanum hirtum Vahl. Rev. Colomb. Cienc. Hortic. 14(3), 291-300. Doi:

Dar, E.A., A.S. Brar, and A. Yousuf. 2018. Growing degree days and heat use efficiency of wheat as influenced by thermal and moisture regimes. J. Agrometeorol. 20(2), 168-170. Doi:

Du Plessis, H., M.-L. Schlemmer, and J. Van den Berg. 2020. The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 11(4), 228. Doi:

Fischer, G., A. Parra-Coronado, and H.E. Balaguera-López. 2022. Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agron. Colomb. 40(2), 212-227. Doi:

Dugalic, K., R. Sudar, M. Viljevac, M. Josipovic, and T. Cupic. 2014. Sorbitol and sugar composition in plum fruits influenced by climatic conditions. J. Agr. Sci. Tech. 16, 1145-1155.

González, S. 2021. Estrategia económica social a partir de las ciruelas en Nuevo Colón, Boyacá. Undergraduate thesis. Facultad de Arquitectura y Diseño, Pontificia Universidad Javeriana, Bogota.

Kukal, M.S. and S. Irmak. 2018. U.S. Agro-Climate in 20th Century: Growing degree days, first and last frost, growing season length, and impacts on crop yields. Sci. Rep. 8(1), 6977. Doi:

Lizaso, J.I., M. Ruiz-Ramos, L. Rodríguez, C. Gabaldon-Leal, J.A. Oliveira, I.J. Lorite, D. Sánchez, E. García, and A. Rodríguez. 2018. Impact of high temperatures in maize: Phenology and yield components. Field Crops Res. 216, 129-140. Doi:

Ma, Y., W. Zhang, S. Cheng, Y. Liu, W. Yang, Y. Wang, M. Guo, and G. Chen. 2022. Postharvest storage at near-freezing temperature maintained the quality and antioxidant properties of Prunus domestica L. cv. Ximei fruit. Sci. Hortic. 293, 110720. Doi:

Manganaris, G.A. and C.H. Crisosto. 2020. Stone fruits: Peaches, nectarines, plums, apricots. pp. 311-322. In: Gil, M.I. and R. Beaudry (eds.). Controlled and modified atmospheres for fresh and fresh-cut produce. Academic Press, London. Doi:

Parra-Coronado, A. 2014. Efecto de las condiciones climáticas en el crecimiento y calidad poscosecha del fruto de la feijoa (Acca sellowiana (O. Berg) Burret.). PhD thesis. Facultad de Agronomía, Universidad Nacional de Colombia, Bogota.

Parra-Coronado, A., G. Fischer, and J.H. Camacho-Tamayo. 2015. Development and quality of pineapple guava fruit in two locations with different altitudes in Cundinamarca, Colombia. Bragantia 74(3), 359-366. Doi:

Piao, S., Q. Liu, A. Chen, I.A. Janssens, Y. Fu, J. Dai, L. Liu, X. Lian, M. Shen, and X. Zhu. 2019. Plant phenology and global climate change: Current progresses and challenges. Global Change Biol. 25(6), 1922-1940. Doi:

Pinzón-Sandoval, E.H., H.E. Balaguera-López, and M.E. Becerra-Gonzalez. 2022. Phenological and physicochemical changes during fruit development in two peach cultivars in the high tropics. Rev. U.D.C.A Act. Div. Cient. 25(1), e1942. Doi:

Pinzón-Sandoval, E.H., W. Pineda-Ríos, and P. Serrano-Cely. 2021. Mathematical models for describing growth in peach (Prunus persica [L.] Batsch.) fruit cv. Dorado. Rev. Colomb. Cienc. Hortic. 15(3), e13259. Doi:

Quintero, E. n.d. Ecología agrícola. In:; consulted: september, 2022.

Quintero, O. 2012. Feijoa (Acca sellowiana Berg). pp. 443-473. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.

Ramírez-Jiménez, J.A., L.M. Hoyos-Carvajal, and O.J. Córdoba-Gaona. 2021. Phenology growth and yield of grafted tomato plants in the high Andean region of Colombia. Rev. Colomb. Cienc. Hortic. 15(1), e11667. Doi:

Salazar-Gutierrez, M.R., J. Johnson, B. Chaves-Cordoba, and G. Hoogenboom. 2013. Relationship of base temperature to development of winter wheat. Int. J. Plant Prod. 7(4), 741-762.

Shivers, S.W., D.A. Roberts, and J.P. McFadden. 2019. Using paired thermal and hyperspectral aerial imagery to quantify land surface temperature variability and assess crop stress within California orchards. Remote Sens. Environ. 222, 215-231. Doi:

Syropoulou, A., I. Roussis, S. Karydogianni, V. Kouneli, I. Kakabouki, A. Mavroeidis, A. Folina, D. Beslemes, and D. Bilalis. 2022. Effects of organic and inorganic fertilization on growth and yield of Physalis peruviana L. crop under Mediterranean conditions. Notulae Sci. Biol. 14(1), 11220. Doi:

Trbic, G., T. Popov, V. Djurdjevic, I. Milunovic, T. Dejanovic, S. Gnjato, and M. Ivanisevic. 2022. Climate change in Bosnia and Herzegovina according to climate scenario RCP8.5 and possible impact on fruit production. Atmosphere 13(1), 1. Doi:

Woznicki, T.L., O.M. Heide, A. Sønsteby, F. Måge, and S.F. Remberg. 2019. Climate warming enhances flower formation, earliness of blooming and fruit size in plum (Prunus domestica L.) in the cool Nordic environment. Sci. Hortic. 257, 108750. Doi:

‘Horvin’ plum crop fruits in Nuevo Colón (Boyaca, Colombia). Photo: M. Orjuela-Angulo




How to Cite

Orjuela-Angulo, M., Parra-Coronado, A., & Camacho-Tamayo, J. H. (2022). Base temperature for a phenological stage in plum cultivar Horvin (Prunus salicina Lindl.). Revista Colombiana De Ciencias Hortícolas, 16(3), e15179.



Fruits section