Base temperature for a phenological stage in plum cultivar Horvin (Prunus salicina Lindl.)

Authors

  • Mayerlin Orjuela-Angulo Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ingeniería, Departamento de Ingeniería Civil y Agrícola, Bogota https://orcid.org/0000-0001-8716-2122
  • Alfonso Parra-Coronado Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ingeniería, Departamento de Ingeniería Civil y Agrícola, Bogota https://orcid.org/0000-0001-9045-2083
  • Jesús Hernán Camacho-Tamayo Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ingeniería, Departamento de Ingeniería Civil y Agrícola, Bogota https://orcid.org/0000-0002-7066-369X

DOI:

https://doi.org/10.17584/rcch.2022v16i3.15179

Keywords:

Growing degree days, Stone fruit, Growth models, Mountain climate

Abstract

The plum (Prunus salicina Lindl.) is affected by the amount of water provided by its environment, as conditioned by climatic factors, especially temperature. Fruit development, in terms of physiological time or growing degree-days (GDD), is more accurate than quantification in terms of crop scheduling dates. The objective of this research was to determine the base temperature (Tb) of the phenological period between fruit set and harvest in Horvin plums and to express this duration in terms of GDD to determine the harvest date. Twenty trees were marked per locality at four different altitudes (2,449; 2,285; 2,215 and 2,195 m) in the municipality of Nuevo Colon, Boyaca. During 2015 and 2016, the dates of fruit set and harvest were recorded. Tb was estimated using different methods, as well as the GDD required to go from fruit set to harvest. The variance showed the best statistical fit between coefficient of variation and standard deviation for estimating Tb, with a high degree of correlation. The Tb for this phenological period was 2.9ºC. The results showed that a mean of 1,528 GDD and 81 days were required to pass from fruit set to fruit harvest.

Downloads

Download data is not yet available.

References

Akbar, S.A. 2019. Evaluation of antioxidant activity on plum fruit (Prunus domestica L.) skin extract applied for natural acid-base indicator. Elkawnie: J. Islamic Sci. Technol. 5(1), 21-29. Doi: https://doi.org/10.22373/ekw.v5i1.4516

Anchico-Jojoa, W., J.R. Peixoto, C.R. Spehar, and M.S. Vilela. 2021. Calculation of the thermal units for 13 codes of the BBCH scale of 12 progenies of quinoa in the growing conditions of the Brazilian savanna. Rev. Colomb. Cienc. Hortic. 15(3), e13109. Doi: https://doi.org/10.17584/rcch.2021v15i3.13109

Cepeda M., A., J.E. Vélez-Sánchez, and H.E. Balaguera-López. 2021. Analysis of growth and physicochemical changes in apple cv. Anna in a high-altitude tropical climate. Rev. Colomb. Cienc. Hortic. 15(2), e12508. Doi: https://doi.org/10.17584/rcch.2021v15i2.12508

Criollo-Escobar, H., M.-F. Moncayo-Palacios, and T.C. Lagos-Burbano. 2020. Phenology and growth of lulo (Solanum quitoense Lam) plants grafted onto Solanum hirtum Vahl. Rev. Colomb. Cienc. Hortic. 14(3), 291-300. Doi: https://doi.org/10.17584/rcch.2020v14i3.11005

Dar, E.A., A.S. Brar, and A. Yousuf. 2018. Growing degree days and heat use efficiency of wheat as influenced by thermal and moisture regimes. J. Agrometeorol. 20(2), 168-170. Doi: https://doi.org/10.54386/jam.v20i2.535

Du Plessis, H., M.-L. Schlemmer, and J. Van den Berg. 2020. The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 11(4), 228. Doi: https://doi.org/10.3390/insects11040228

Fischer, G., A. Parra-Coronado, and H.E. Balaguera-López. 2022. Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agron. Colomb. 40(2), 212-227. Doi: https://doi.org/10.15446/agron.colomb.v40n2.101854

Dugalic, K., R. Sudar, M. Viljevac, M. Josipovic, and T. Cupic. 2014. Sorbitol and sugar composition in plum fruits influenced by climatic conditions. J. Agr. Sci. Tech. 16, 1145-1155.

González, S. 2021. Estrategia económica social a partir de las ciruelas en Nuevo Colón, Boyacá. Undergraduate thesis. Facultad de Arquitectura y Diseño, Pontificia Universidad Javeriana, Bogota.

Kukal, M.S. and S. Irmak. 2018. U.S. Agro-Climate in 20th Century: Growing degree days, first and last frost, growing season length, and impacts on crop yields. Sci. Rep. 8(1), 6977. Doi: https://doi.org/10.1038/s41598-018-25212-2

Lizaso, J.I., M. Ruiz-Ramos, L. Rodríguez, C. Gabaldon-Leal, J.A. Oliveira, I.J. Lorite, D. Sánchez, E. García, and A. Rodríguez. 2018. Impact of high temperatures in maize: Phenology and yield components. Field Crops Res. 216, 129-140. Doi: https://doi.org/10.1016/j.fcr.2017.11.013

Ma, Y., W. Zhang, S. Cheng, Y. Liu, W. Yang, Y. Wang, M. Guo, and G. Chen. 2022. Postharvest storage at near-freezing temperature maintained the quality and antioxidant properties of Prunus domestica L. cv. Ximei fruit. Sci. Hortic. 293, 110720. Doi: https://doi.org/10.1016/j.scienta.2021.110720

Manganaris, G.A. and C.H. Crisosto. 2020. Stone fruits: Peaches, nectarines, plums, apricots. pp. 311-322. In: Gil, M.I. and R. Beaudry (eds.). Controlled and modified atmospheres for fresh and fresh-cut produce. Academic Press, London. Doi: https://doi.org/10.1016/B978-0-12-804599-2.00017-X

Parra-Coronado, A. 2014. Efecto de las condiciones climáticas en el crecimiento y calidad poscosecha del fruto de la feijoa (Acca sellowiana (O. Berg) Burret.). PhD thesis. Facultad de Agronomía, Universidad Nacional de Colombia, Bogota.

Parra-Coronado, A., G. Fischer, and J.H. Camacho-Tamayo. 2015. Development and quality of pineapple guava fruit in two locations with different altitudes in Cundinamarca, Colombia. Bragantia 74(3), 359-366. Doi: https://doi.org/10.1590/1678-4499.0459

Piao, S., Q. Liu, A. Chen, I.A. Janssens, Y. Fu, J. Dai, L. Liu, X. Lian, M. Shen, and X. Zhu. 2019. Plant phenology and global climate change: Current progresses and challenges. Global Change Biol. 25(6), 1922-1940. Doi: https://doi.org/10.1111/gcb.14619

Pinzón-Sandoval, E.H., H.E. Balaguera-López, and M.E. Becerra-Gonzalez. 2022. Phenological and physicochemical changes during fruit development in two peach cultivars in the high tropics. Rev. U.D.C.A Act. Div. Cient. 25(1), e1942. Doi: https://doi.org/10.31910/rudca.v25.n1.2022.1942

Pinzón-Sandoval, E.H., W. Pineda-Ríos, and P. Serrano-Cely. 2021. Mathematical models for describing growth in peach (Prunus persica [L.] Batsch.) fruit cv. Dorado. Rev. Colomb. Cienc. Hortic. 15(3), e13259. Doi: https://doi.org/10.17584/rcch.2021v15i3.13259

Quintero, E. n.d. Ecología agrícola. In: https://www.ecured.cu/Fenolog%C3%ADa; consulted: september, 2022.

Quintero, O. 2012. Feijoa (Acca sellowiana Berg). pp. 443-473. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.

Ramírez-Jiménez, J.A., L.M. Hoyos-Carvajal, and O.J. Córdoba-Gaona. 2021. Phenology growth and yield of grafted tomato plants in the high Andean region of Colombia. Rev. Colomb. Cienc. Hortic. 15(1), e11667. Doi: https://doi.org/10.17584/rcch.2021v15i1.11667

Salazar-Gutierrez, M.R., J. Johnson, B. Chaves-Cordoba, and G. Hoogenboom. 2013. Relationship of base temperature to development of winter wheat. Int. J. Plant Prod. 7(4), 741-762.

Shivers, S.W., D.A. Roberts, and J.P. McFadden. 2019. Using paired thermal and hyperspectral aerial imagery to quantify land surface temperature variability and assess crop stress within California orchards. Remote Sens. Environ. 222, 215-231. Doi: https://doi.org/10.1016/j.rse.2018.12.030

Syropoulou, A., I. Roussis, S. Karydogianni, V. Kouneli, I. Kakabouki, A. Mavroeidis, A. Folina, D. Beslemes, and D. Bilalis. 2022. Effects of organic and inorganic fertilization on growth and yield of Physalis peruviana L. crop under Mediterranean conditions. Notulae Sci. Biol. 14(1), 11220. Doi: https://doi.org/10.15835/nsb14111220

Trbic, G., T. Popov, V. Djurdjevic, I. Milunovic, T. Dejanovic, S. Gnjato, and M. Ivanisevic. 2022. Climate change in Bosnia and Herzegovina according to climate scenario RCP8.5 and possible impact on fruit production. Atmosphere 13(1), 1. Doi: https://doi.org/10.3390/atmos13010001

Woznicki, T.L., O.M. Heide, A. Sønsteby, F. Måge, and S.F. Remberg. 2019. Climate warming enhances flower formation, earliness of blooming and fruit size in plum (Prunus domestica L.) in the cool Nordic environment. Sci. Hortic. 257, 108750. Doi: https://doi.org/10.1016/j.scienta.2019.108750

‘Horvin’ plum crop fruits in Nuevo Colón (Boyaca, Colombia). Photo: M. Orjuela-Angulo

Downloads

Published

2022-09-01

How to Cite

Orjuela-Angulo, M., Parra-Coronado, A., & Camacho-Tamayo, J. H. (2022). Base temperature for a phenological stage in plum cultivar Horvin (Prunus salicina Lindl.). Revista Colombiana De Ciencias Hortícolas, 16(3), e15179. https://doi.org/10.17584/rcch.2022v16i3.15179

Issue

Section

Fruits section