Skip to main navigation menu Skip to main content Skip to site footer

Effect of some edaphic conditions on physicochemical and physiological characteristics of ‘Horvin’ plum fruit

‘Horvin’ plum fruits grown in Nuevo Colón (Boyaca, Colombia). Photo: M. Orjuela-Angulo

Abstract

Edaphic conditions are determinant factors of fruit quality at harvest. The objective was to establish which edaphic variables influence fruit harvest and to determine the influence of these variables on some physicochemical and physiological characteristics of ‘Horvin’ plum fruits at harvest. In the municipality of Nuevo Colon (Boyaca, Colombia), records of two harvests were made in four locations during 2015 and 2016. Ten trees per row and twenty trees per location were marked, for a total of 80 trees for the four locations. For the chemical soil analyses, four samples were taken per location at a depth between 20 and 30 cm, for a total of 16 soil samples. For the physical analysis, 6 samples were taken per location at a depth between 20 and 30 cm, for a total of 24 soil samples. The results showed that the bulk density in the four locations was high, which is evidence of high levels of compaction in each location, resulting in low fruit development at harvest. A relationship was found with fruits at harvest in characteristics such as weight and diameter for some chemical variables, such as pH, phosphorus, cation exchange capacity, calcium, magnesium, potassium, zinc, copper, boron and sulfur.

Keywords

Fruit quality, Harvest day, Physicochemical soil analysis, Bulk density, Stone fruit

PDF

References

  • Andina G., D. nd. Azufre, calcio, magnesio y oligoelementos. In: Introducción a la edafología, https://www.edafologia.org/docencia/clases-virtuales/; consulted: January, 2023.
  • Afanador-Barajas, L.N., A.V. Wilches, Y.A. Mariño Macana, and G. Medina-Pérez. 2022. History, distribution, production and taxonomic classification of plum. pp. 1-20. In: Gull, A., G. Ahmad Nayik, S. Mohd Wani, and V. Nanda (eds.). Handbook of plum fruit. CRC Press, Boca Raton, FL. Doi: https://doi.org/10.1201/9781003205449-1
  • Álvarez-Herrera, J.G., Y.A. Deaquiz, and X. Rozo-Romero. 2021. Effect of storage temperature and maturity stage on the postharvest period of ‘Horvin’ plums (Prunus domestica L.). Ing. Invest. 41(2), e82530. Doi: https://doi.org/10.15446/ing.investig.v41n2.82530
  • Brasili, E., I. Bavasso, V. Petruccelli, G. Vilardi, A. Valletta, C. Dal Bosco, A. Gentili, G. Pasqua, and L. Di Palma. 2020. Remediation of hexavalent chromium contaminated water through zero-valent iron nanoparticles and effects on tomato plant growth performance. Sci. Rep. 10(1), 1920. Doi: https://doi.org/10.1038/s41598-020-58639-7
  • Carrasco, J., J.F. Pastén D., and J. Riquelme S. 2010. Manejo de suelos para el establecimiento de huertos frutales. pp. 81-108. In: Carrasco J., J. and J. Riquelme S. (eds.). Suelo y su relación con el manejo. Boletin INIA 207. Instituto de Investigaciones Agropecuarias, Rengo, Chile.
  • Cepeda M., A., J.E. Vélez-Sánchez, and H.E. Balaguera-López. 2021. Analysis of growth and physicochemical changes in apple cv. Anna in a high-altitude tropical climate. Rev. Colomb. Cienc. Hortic. 15(2), e12508. Doi: https://doi.org/10.17584/rcch.2021v15i2.12508
  • Cochavi, A., S. Rachmilevitch, and G. Bel. 2019. The effect of irrigation regimes on plum (Prunus cerasifera) root system development dynamics. Plant Biosyst. 153(4), 529-537. Doi: https://doi.org/10.1080/11263504.2018.1508087
  • Cotrufo, M.F., M.G. Ranalli, M.L. Haddix, J. Six, and E. Lugato. 2019. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 12, 989-994. Doi: https://doi.org/10.1038/s41561-019-0484-6
  • Cremona, M.V. and A.S. Enriquez. 2020. Algunas propiedades del suelo que condicionan su comportamiento: El pH y la conductividad eléctrica. Presencia 31(73), 5-8.
  • FAO. 2023. FAOSTAT - Production. In: https://www.fao.org/faostat/en/#data; consulted: January, 2023.
  • Fischer, G., A. Parra-Coronado, and H.E. Balaguera-López. 2022. Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agron. Colomb. 40(2), 212-227. Doi: https://doi.org/10.15446/agron.colomb.v40n2.101854
  • Fu, Y., Z. Tian, A. Amoozegar, and J. Heitman. 2019. Measuring dynamic changes of soil porosity during compaction. Soil Tillage Res. 193, 114-121. Doi: https://doi.org/10.1016/j.still.2019.05.016
  • García-Olalla, C. 1996. Relaciones suelo-planta-herbivoro en un sistema pastoral de montaña. Pirineos (147-148), 81-96. Doi: https://doi.org/10.3989/pirineos.1996.v147-148.138
  • Guerrero, R. 1993. Las propiedades químicas del suelo y su significado agronómico. Universidad Nacional de Colombia, Bogotá.
  • Icontec, Instituto Colombiano de Normas Técnicas y Certificación. 2015. Norma Técnica Colombiana – NTC 440. Productos alimenticios. Métodos de ensayo. Bogota.
  • IGAC, Instituto Geográfico Agustín Codazzi. 2005. Estudio general de suelos y zonificación de tierras del departamento de Boyacá. Bogota.
  • Jaramillo, J. 2002. Introducción a la ciencia del suelo. Universidad Nacional de Colombia, Medellin, Colombia.
  • Jensen, J.L., P. Schjønning, C.W. Watts, B.T. Christensen, and L.J. Munkholm. 2020. Short-term changes in soil pore size distribution: Impact of land use. Soil Tillage Res. 199, 104597. Doi: https://doi.org/10.1016/j.still.2020.104597
  • Ji, X., Y. Kang, T. Fan, Q. Xiong, S. Zhang, W. Tao, and H. Zhang. 2020. An antimonene/Cp* Rh(phen)Cl/black phosphorus hybrid nanosheet-based Z-scheme artificial photosynthesis for enhanced photo/bio-catalytic CO2 reduction. J. Mater. Chem. A 8(1), 323-333. Doi: https://doi.org/10.1039/C9TA11167K
  • Jiang, C.-C., Z.-Z. Fang, D.-R. Zhou, S.-L. Pan, and X.-F. Ye. 2019. Changes in secondary metabolites, organic acids and soluble sugars during the development of plum fruit cv. ‘Furongli’ (Prunus salicina Lindl). J. Sci. Food Agric. 99(3), 1010-1019. Doi: https://doi.org/10.1002/jsfa.9265
  • Liu, K. and C. Zhang. 2021. Volatile organic compounds gas sensor based on quartz crystal microbalance for fruit freshness detection: A review. Food Chem. 334, 127615. Doi: https://doi.org/10.1016/j.foodchem.2020.127615
  • Medeiros, P.L., G.G.C. Silva, E.M.M. Oliveira, C.O. Ribeiro, J.M.S. Silva, and A.S. Pimenta. 2020. Efficiency of nutrient use for biomass production of a Eucalyptus clone as a function of planting density in short-rotation cropping. Aust. For. 83(2), 66-74. Doi: https://doi.org/10.1080/00049158.2020.1774958
  • Mertoğlu, K., A. Gülbandilar, and İ. Bulduk. 2020. Growing conditions effect on fruit phytochemical composition and anti-microbial activity of plum (cv. Black Diamond). Int. J. Agric. For. Life Sci. 4(1), 56-61.
  • Mihajlovic, J., A. Bauriegel, H.J. Stärk, N. Roßkopf, J. Zeitz, G. Milbert, and J. Rinklebe. 2019. Rare earth elements in soil profiles of various ecosystems across Germany. Appl. Geochem. 102, 197-217. Doi: https://doi.org/10.1016/j.apgeochem.2019.02.002
  • Milošević, T. and N. Milošević. 2020. Soil fertility: Plant nutrition vis-à-vis fruit yield and quality of stone fruits. pp. 583-606. In: Srivastava A.K. and C. Hu (eds.). Fruit crops. Diagnosis and management of nutrient constraints. Elsevier, Amsterdam. Doi: https://doi.org/10.1016/B978-0-12-818732-6.00041-1
  • Neina, D. 2019. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 2019, 5794869. Doi: https://doi.org/10.1155/2019/5794869
  • Orduz-Ríos, F., K.V. Suárez-Parra, P.A. Serrano-Cely, P.C. Serrano-Agudelo, and N. Forero-Pineda. 2020. Evaluation of NPK-Ca-Mg dynamics in plum (Prunus salicina Lindl.) var. Horvin under nursery conditions. Rev. Colomb. Cienc. Hortic. 14(3), 334-341. Doi: https://doi.org/10.17584/rcch.2020v14i3.11941
  • Parra-Coronado, A. 2014. Efecto de las condiciones climáticas en el crecimiento y calidad poscosecha del fruto de la feijoa (Acca sellowiana (O. Berg) Burret. PhD thesis. Facultad de Agronomía, Universidad Nacional de Colombia, Bogota.
  • Parra-Coronado, A., J.E. Hernández-Hernández, and J.H. Camacho-Tamayo. 2007. Estudio de algunas propiedades fisicas y fisiológicas precosecha de la ciruela variedad Horvin. Rev. Bras. Frut. 29(3), 431-437. Doi: https://doi.org/10.1590/S0100-29452007000300006
  • Pešaković, M., I. Glišić, J. Tomić, Ž. Karaklajić-Stajić, B. Rilak, L. Mandić, and D. Đukić. 2020. Evaluation of innovative and environmentally safe growing practice suitable for sustainable management of plum orchards. Acta Agric. Serbica 25(49), 77-82. Doi: https://doi.org/10.5937/AASer2049077P
  • Piper, C.S. 2019. Soil and plant analysis. Scientific Publishers, Jodhpur, India.
  • Pulido-García, B. 2012. Plan de desarrollo 2012: Unidos por la defensa del medio ambiente y del desarrollo de nuestra gente. Concejo Municipal de Nuevo Colón, Nuevo Colon, Colombia.
  • Ramesh, T., N.S. Bolan, M.B. Kirkham, H. Wijesekara, M. Kanchikerimath, C.S. Rao, S. Sandeep, J. Rinklebe, Y.S. Ok, B.U. Choudhury, H. Wang, C. Tang, X. Wang, Z. Song, and O.W. Freeman II. 2019. Soil organic carbon dynamics: Impact of land use changes and management practices: A review. Adv. Agron. 156, 1-107. Doi: https://doi.org/10.1016/bs.agron.2019.02.001
  • Rosemarin, A., B. Macura, J. Carolus, K. Barquet, F. Ek, L. Järnberg, D. Lorick, S. Johannesdottir, S.M. Pedersen, J. Koskiaho, N.R. Haddaway, and T. Okruszko. 2020. Circular nutrient solutions for agriculture and wastewater–a review of technologies and practices. Curr. Opin. Environ. Sustain. 45, 78-91. Doi: https://doi.org/10.1016/j.cosust.2020.09.007
  • Sánchez, P. 2015. Influencia de la temperatura en etapas postcosecha sobre la calidad de diferentes variedades de ciruela. Undergraduate thesis. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural, Universidad Politécnica de Valencia, Valencia, Spain.
  • Schloter, M., P. Nannipieri, S.J. Sørensen, and J.D. van Elsas. 2018. Microbial indicators for soil quality. Biol. Fertil. Soils 54, 1-10. Doi: https://doi.org/10.1007/s00374-017-1248-3
  • Schouten, R.E., L.M.M. Tojskens, and O. van Kooten. 2002. Predicting keeping quality of batches of cucumber fruits based on a physiological mechanism. Postharvest Biol. Technol. 26(2), 209-220. Doi: https://doi.org/10.1016/S0925-5214(02)00017-0
  • Souza, R., S. Hartzell, A.P.F. Ferraz, A.Q. Almeida, J.R.S. Lima, A.C.D. Antonino, and E.S. Souza. 2021. Dynamics of soil penetration resistance in water-controlled environments. Soil Tillage Res. 205, 104768. Doi: https://doi.org/10.1016/j.still.2020.104768
  • Stanturf, J.A. and S.H. Schoenholtz. 1998. Soils and landforms. pp. 123-147. In: Messina, M.G. and W.H. Conner (eds.). Southern forested wetlands. Routledge, London. Doi: https://doi.org/10.4324/9780429342653-6
  • Tabrizi, A., R. Dargahi, S.T. Ghadim, M. Javadi, H.R. Pirouzian, A. Azizi, and A.H. Rad. 2020. Functional laxative foods: Concepts, trends and health benefits. Stud. Nat. Prod. 66, 305-330. Doi: https://doi.org/10.1016/B978-0-12-817907-9.00011-8
  • Taliman, N.A., Q. Dong, K. Echigo, V. Raboy, and H. Saneoka. 2019. Effect of phosphorus fertilization on the growth, photosynthesis, nitrogen fixation, mineral accumulation, seed yield, and seed quality of a soybean low-phytate line. Plants 8(5), 119. Doi: https://doi.org/10.3390/plants8050119
  • Ullah, H., A. De Filippis, H. Khan, J. Xiao, and M. Daglia. 2020. An overview of the health benefits of Prunus species with special reference to metabolic syndrome risk factors. Food Chem. Toxicol. 144, 111574. Doi: https://doi.org/10.1016/j.fct.2020.111574
  • Wiesmeier, M., L. Urbanski, E. Hobley, B. Lang, M. von Lützow, E. Marin-Spiotta, B. van Wesemael, E. Rabot, M. LieB, N. Garcia-Franco, U. Wollschläger, H.J. Vogel, and I. Kögel-Knabner. 2019. Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales. Geoderma 333, 149-162. Doi: https://doi.org/10.1016/j.geoderma.2018.07.026
  • Yang, H., B. Mo, M. Zhou, T. Zhu, and J. Cao. 2019. Effects of plum plantation ages on soil organic carbon mineralization in the karst rocky desertification ecosystem of southwest China. Forests 10(12), 1107. Doi: https://doi.org/10.3390/f10121107
  • Zhang, H., X. Qi, C. Ma, J. Wu, Y. Bi, R. Sun, J. Yu, D. Xie, and J. Song. 2020. Effect analysis of soil type and silt content on silt-based foamed concrete with different density. Materials 13(17), 3866. Doi: https://doi.org/10.3390/ma13173866

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.