Skip to main navigation menu Skip to main content Skip to site footer

DRIS II: Interpretation of DRIS indices in oil palm cultivation

Oil palm leaf. Photo: G.E. Herrera-Peña

Abstract

The nutritional diagnosis based on leaf tissue analysis is an efficient tool for detecting nutritional imbalances and assisting the fertilizer recommendation process. Therefore, the objective was to use the indices obtained through the Integrated Diagnosis and Recommendation System (DRIS) in oil palm cultivation to interpret them based on the criteria of excess limitation (LE), deficiency limitation (LF), and non-limiting (NL). It was found that sulfur, potassium, and magnesium are not presenting any limitations for production, while zinc, iron, and copper showed deficiency limitations, and nitrogen an excess limitation. The likelihood of a reaction to an augmented nutrient supply via fertilizers was assessed. The results revealed a strong likelihood of a negative response for nitrogen, while elements like phosphorus, potassium, calcium, magnesium, sulfur, zinc, and boron exhibited no significant response. As a final implemented methodology, critical levels and sufficiency ranges were calculated for each element, based on the correlation between the nutrient quantity in leaf tissue and the DRIS index obtained for each element in everyone. Differences were found compared to what has been reported by other authors.

Keywords

Plant nutrition, Critical levels, Sufficiency ranges, Oil crops

PDF

References

  1. Álvarez, V.H. and R.A. Leite. 1992. Fundamentos estadísticos das fórmulas usadas para cálculos dos índices dos nutrientes no sistema integrado de diagnose e recomendação – DRIS. pp. 186-188. In: 20 Reunião Brasileira de Fertilidade do solo e Nutrição de plantas. SBCS, Piracicaba, Brazil.
  2. Beaufils, E.R. 1973. Diagnosis and recommendation integrated system (DRlS). A general scheme for experimentation and calibration based on principles developed from research in plant nutrition. Soil Sci. Bull. 1. University of Natal, Pietermaritzburg, South Africa.
  3. Beć, K.B., J. Grabska, G.K. Bonn, M. Popp, and C.W. Huck. 2020. Principles and applications of vibrational spectroscopic imaging in plant science: a review. Front. Plant Sci. 11, 1226. Doi: https://doi.org/10.3389/fpls.2020.01226
  4. Broschat, T.K. 2007. Boron deficiency symptoms in palms. Palmas 51(3), 115-126.
  5. Cantarutti, R.B., N.F. Barros, H.E.P. Martinez, and R.F. Novais. 2007. Avaliação da fertilidade do solo e recomendação de fertilizantes. pp. 769-850. In: Novais, R.F., V.H. Alvarez, N.F. Barros, R.L.F. Fontes, R.B. Cantarutti, and J.C. Lima (Eds.). Fertilidade do solo. Sociedade Brasilera de Ciencia do Solo, Viçosa, Brazil.
  6. Chaleshtori, A.A., E. Panahpour, R. Iranipour, A. Moezzi. 2021. Diagnosing the nutritional balance of almond (Prunus sp.) orchards using DRIS and DOP methods. J. Plant Growth Regul. 40, 1640-1651. Doi: https://doi.org/10.1007/s00344-020-10214-0
  7. Crespo-González, J.J., O.S. Ruiz-Villadiego, and K.S. Ospino-Villalba. 2020. Determinación de nitrógeno foliar en palma de aceite con espectroscopía en el infrarrojo medio (MIR) y cercano (NIR) por el método de regresión de mínimos cuadrados parciales de componentes principales (PLS). Rev. Investig. Agr. Ambient. 11(2), 43-57. Doi: https://doi.org/10.22490/21456453.3206
  8. Dassou, O.S., A. Adjanohoun, W. Vanhove, R. Impens, H. Aholoukpè, X. Bonneau, A. Flori, B. Cochard, B.A. Sinsin, P. van Damme, and J. Ollivier. 2022. Oil palm (Elaeis guineensis Jacq.) genetic differences in mineral nutrition: specific leaflet mineral concentrations of high-yielding oil palm progenies and their implications for managing K and Mg nutrition. Plant Soil 475, 279-292. Doi: https://doi.org/10.1007/s11104-022-05367-8
  9. Fedepalma. 2013. Anuario estadístico 2010. La agroindustria de la palma de aceite en Colombia. Bogota.
  10. Goh, K.J., P.S. Chew, and K.C. Teoh. 2012. Vegetative growth, resource optimisation and N productivity of oil palm (Elaeis guineensis Jacq.) as influenced by soil and fertilization. In: Proc. 4th International Crop Science Congress. The Regional Institute, Brisbane, Australia.
  11. González-Orozco, C. E. and A. Pesca. 2022. Regionalization of cacao (Theobroma cacao L.) in Colombia. Front. Sustain. Food Syst. 6, 925800. Doi: https://doi.org/10.3389/fsufs.2022.925800
  12. Guzmán, M. and J. Betancourt. 2007. Efecto de las aplicaciones fraccionadas del fertilizante compuesto sobre la producción y niveles nutricionales de la palma de aceite en la plantación Palmas del Casanare. Palmas 28(Special), Tome I, 449-456.
  13. Guindani, R.H.P., I. Anghinoni, and G.R. Nachtigall. 2009. DRIS na avaliação do estado nutricional do arroz irrigado por inundação. Rev. Bras. Ciênc. Solo 33(1), 109-118. Doi: https://doi.org/10.1590/S0100-06832009000100012
  14. Herrera-Peña, G.E., J.D. Alvarez-Carpintero, and J.H. Camacho-Tamayo. 2023. DRIS I: development of DRIS indices in oil palm cultivation. Rev. Colomb. Cienc. Hortic. 17(2), e16094. Doi: https://doi.org/1017584/rcch.2023v17i216094
  15. IGAC, Instituto Geográfico Agustín Codazzi. 1982. Mapa de suelos de Colombia: memoria explicativa y mapa (escala 1:500.000). Bogota.
  16. Kamireddy, M., S.K. Behera, and S. Kancherla. 2023. Establishing critical leaf nutrient concentrations and identification of yield limiting nutrients for precise nutrient prescriptions of oil palm (Elaeis guineensis Jacq) plantations. Agriculture 13(2), 453. Doi: https://doi.org/10.3390/agriculture13020453
  17. Kurihara, C.H. 2004. Demanda de nutrientes pela soja e diagnose de seu estado nutricional. PhD thesis. Universidade Federal de Viçosa. Viçosa, Brazil.
  18. Kurihara, C.H., L.A. Staut, and S. Maeda. 2008. Faixas de suficiência de nutrientes em de soja, em Mato Grosso do Sul e Mato Grosso, definidas pelo uso do método DRIS de diagnose do estado nutricional. pp. 293-295. In: 30 Reunião de Pesquisa de Soja da Região Central do Brasil. Documentos 304. Embrapa Soja, Londrina, Brazil.
  19. Marschner, H. 1995. Mineral nutrition of higher plants. 2nd ed. Academy Press, Oxford, UK.
  20. Mirande-Ney, C., G. Tcherkez, T. Balliau, M. Zivy, F. Gilard, J. Cui, J. Ghashghaie, and E. Lamade. 2020. Metabolic leaf responses to potassium availability in oil palm (Elaeis guineensis Jacq.) trees grown in the field. Environ. Exp. Bot. 175, 104062. Doi: https://doi.org/https://doi.org/10.1016/j.envexpbot.2020.104062
  21. Montero Espinosa, J. 2021. Relación entre las respuestas espectrales y la fertilización con nitrógeno y potasio en el cultivo de palma de aceite (Híbrido OxG). MSc thesis. Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogota.
  22. Nachtigall, G.R. and A.R. Dechen. 2007. DRIS norms for evaluating the nutritional state of apple tree. Sci. Agric. 64(3), 282-287. Doi: https://doi.org/10.1590/S0103-90162007000300011
  23. Nair, K.P. 2019. Soil fertility and nutrient management. pp. 165-189. In: Intelligent soil management for sustainable agriculture. Springer, Cham, Switzerland. Doi: https://doi.org/10.1007/978-3-030-15530-8_17
  24. Njukeng, J.N., E.E. Ehabe, G.E. Nkeng, and E. Schnug. 2013. Preliminary diagnosis and recommendation integrated system (DRIS) norms for Hevea brasiliensis grown in the humid forest zone of Cameroon. Int. J. Plant Soil Sci. 2(2), 230-243. Doi: https://doi.org/10.9734/IJPSS/2013/5107
  25. Oberthür, T. and C. Arenas. 2019. Indicadores de rendimiento de nutrientes en palma de aceite. Palmas 40 (Special), 144-157.
  26. Oliveira, S.A. and D.M.G. Sousa. 1993. Uso do DRIS modificado na interpretação de análise de solo para soja no leste de Mato Grosso. pp. 83-84. In: 24 Congresso Brasileiro de Ciência do Solo. Sociedade Brasileira de Ciência do Solo, Goiânia, Brazil.
  27. Pardo, L. and Ocampo-Peña, N. 2019. Contexto del impacto ambiental de la palma de aceite en Colombia. Palmas, 40(3), 79-88.
  28. Rahman, Z.A. 2010. El papel del fósforo en el desarrollo sostenible de la palma de aceite (Elaeis guineensis Jacq.): producción en suelos tropicales. Palmas 31(Special), Tome 1, 205-218.
  29. Reis Jr, R.A., J.B. Corrêa, J.G. Carvalho, and P.T.G. Guimarães. 2002. Diagnose nutricional de cafeeiros da região sul de Minas Gerais: normas DRIS e teores foliares adequados. Rev. Bras. Ciênc. Solo 26(3), 801-808. Doi: https://doi.org/10.1590/S0100-06832002000300026
  30. Reis Jr, R.A. and P.H. Monnerat. 2002. Sugarcane nutritional diagnosis with DRIS norms established in Brazil, South Africa, and the United States. J. Plant Nutr. 25, 2831-2851. Doi: https://doi.org/10.1081/PLN-120015542
  31. Rengel, Z., I. Cakmak, and P.J. White (eds.). 2022. Marschner's mineral nutrition of plants. 4th ed. Academic Press, London.
  32. Romero, H.M., I.M. Ayala, and R. Ruíz. 2007. Ecofisiologia de la palma de aceite. Palmas 28(Special), Tome I, 176-184.
  33. Ruíz-Bello, A. and L.J. Cajuste. 2002. Controlling fertilizer applications through plant analysis. Comm. Soil Sci. Plant Anal. 33(15-18), 2793-2802. Doi: https://doi.org/10.1081/CSS-120014481
  34. Santacruz, L.H., J.A. Cristancho, and F. Munévar. 2004. Variación temporal de los niveles foliares de nutrientes y su relación con la fertilización, la lluvia y el rendimiento de la palma de aceite (Elaeis guineensis Jacq.) en la plantación Guaicaramo (Meta, Colombia). Palmas 25(Special), Tome III, 160-169.
  35. Silveira, C.P., G.R. Nachtigall, and F.A. Monteiro. 2005. Norms for the diagnosis and recommendation integrated system for signal grass. Sci. Agric. 62(6), 513-519. Doi: https://doi.org/10.1590/S0103-90162005000600001
  36. Souza, R.D.F., W.M. Leandro, N.B. Silva, P.C.R. Cunha, and P.A. Ximenes. 2011. Diagnose nutricional pelos métodos dris e faixas de concentração para algodoeiro cultivado sob Cerrado. Pesquisa Agropecuária Tropical 41(2), 220-228. Doi: https://doi.org/10.5216/pat.v41i2.7461
  37. Villamil, J.E., E.O.P. Álvarez, and M.C. Gutiérrez. 2021. Sistema integrado de diagnóstico y recomendación, su aplicación y utilidad en la agricultura. Una Revisión. Cienc. Agric. 18(3), 29-46.
  38. Villaseñor, D., R. de Mello Prado, G.P. Silva, M. Carrillo, and W. Durango. 2020. DRIS norms and limiting nutrients in banana cultivation in the South of Ecuador. J. Plant Nutr. 43(18), 2785-2796. Doi: https://doi.org/10.1080/01904167.2020.1793183
  39. Wadt, P.G.S. 1996. Os métodos da chance matemática e do sistema, integrado de diagnose e recomendação (DRIS) na avaliação nutricional de plantios de eucalipto. PhD thesis. Universidade Federal de Viçosa, Viçosa, Brazil.
  40. Wadt, P.G.S. 2005. Relationships between soil class and nutritional status of coffee plantations. Rev. Bras. Ciênc. Solo 29(2), 227-234. Doi: https://doi.org/10.1590/S0100-06832005000200008
  41. Wadt, P.G.S., R.F. Novais, V.H. Alvarez, S. Fonseca, and N.F. Barros. 1998. Valores de referência para macronutrientes em eucalipto obtidos pelos métodos DRIS e chance matemática. Rev. Bras. Cienc. Solo 22(4), 685-692. Doi: https://doi.org/10.1590/S0100-06831998000400014
  42. Yeo, J.G., J.K. N’Dri, E.F. Edoukou, and J.-L.D.S. Ahui. 2020. Changes in surface soil properties and macroinvertebrate communities with the conversion of secondary forests to oil palm (Elaeis guineensis) plantations. Crop Pasture Sci. 71(9), 837-849. Doi: https://doi.org/10.1071/CP19370

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.