Salinity effect on the vegetative growth of Andean blackberry plants (<i>Rubus glaucus</i> Benth.) inoculated and non-inoculated with mycorrhizal fungi

Authors

  • William Andrés Cardona Corporación Colombiana de Investigación Agropecuaria (Corpoica), C.I. Tibaitatá, Mosquera http://orcid.org/0000-0001-9610-4135
  • Joan Sebastián Gutiérrez D. Facultad de Ciencias Agrarias, Programa de Maestría en Ciencias Agrarias, Línea de Investigación en Suelos y Aguas, Universidad Nacional de Colombia, Bogotá http://orcid.org/0000-0001-6052-9588
  • Oscar Iván Monsalve C. Facultad de Ciencias Agrarias, Programa de Maestría en Ciencias Agrarias, Línea de Investigación en Suelos y Aguas, Universidad Nacional de Colombia, Bogotá http://orcid.org/0000-0003-2302-805X
  • Carmen Rosa Bonilla C. Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá http://orcid.org/0000-0003-1026-1004

DOI:

https://doi.org/10.17584/rcch.2017v11i2.6109

Keywords:

Osmotic stress, mineral nutrition, electric conductivity.

Abstract

Andean blackberry is usually sown in soils without salinity limitations, but the use of fertilizers based on sources of chemical synthesis that do not take  into account nutritional requirement or the use of chicken manure without composting  can cause a long-term salinity effects. In this research, the effect of different concentrations of a saline solution (0, 40, 80 and 120 mM NaCl) on the vegetative growth and nutrient uptake of Andean blackberry plants (Rubus glaucus Benth.), inoculated and non-inoculated with mycorrhizal fungi (Glomus proliferum Dalpe & Declerck strain GB02), was evaluated. A completely randomized design with a factorial arrangement (4×2) was established. Radical growth, accumulation of fresh and dry matter, concentration and absorption of nutrients in the leaves, stems and roots were evaluated. It was found that inoculation with mycorrhizal fungi increased plant growth under saline stress (40 and 80 mM) because of a possible increase in the acquisition of mineral nutrients with low mobility and a reduced intake of Na. At 120 mM, the Ca uptake decreased and Na increased, resulting in a lower water consumption. The plants diminished the capacity to produce enough photo-assimilates to promote development of the plants and the mycorrhizal fungi; therefore, growth and biomass production decreased. The association with the fungus allowed for a greater selectivity by the plants for the potassium ion than the sodium ion.

JEL Classification

Array

Downloads

Download data is not yet available.

References

Al-Karaki, G.N. 2006. Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci. Hortic. 109(1), 1-7. Doi: https://doi.org/10.1016/j.scienta.2006.02.019

Ashraf, M. y A. Bashir. 2003. Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. Flora 198(6), 486-498. Doi: https://doi.org/10.1078/0367-2530-00121

Bertsch, F. 2005. Estudios de absorción de nutrientes como apoyo a las recomendaciones de fertilización. Informaciones agronómicas No. 57. INPOFOS, Quito, Ecuador.

Blaha, G., U. Stelzl, C.M.T. Spahn, R.K. Agrawal, J. Frank y K.H. Nierhaus. 2000. Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods Enzymol. 317, 292-309. Doi: https://doi.org/10.1016/S0076-6879(00)17021-1

Bolaños, M.M., W.A. Cardona, W.L. Ramírez y J.H. Arguelles. 2014. Requerimientos nutricionales (N, P, K y Ca) de Rubus glaucus B., durante crecimiento vegetativo. Memorias XX Congreso Latinoamericano y XVI Congreso Peruano de la Ciencia del Suelo. Cuzco, Perú.

Cardona, W.A., L.G. Bautista Montealegre, N. Flórez Velasco y G. Fischer. 2016a. Desarrollo de la biomasa y raíz en plantas de lulo (Solanum quitoense var. septentrionale) en respuesta al sombrío y anegamiento. Rev. Colomb. Cienc. Hortíc. 10(1), 53-65. Doi: https://doi.org/10.17584/rcch.2016v10i1.5124

Cardona, W.A., O.I. Monsalve, J.S. Gutiérrez y M.M. Bolaños. 2016b. Efecto de N, P, K y Ca sobre crecimiento de mora con tunas en vivero. Memorias XVIII Congreso Colombiano de la Ciencia del Suelo. Villa de Leyva, Colombia.

Cardona, W.A. 2017. Requerimientos nutricionales (nitrógeno, fósforo, potasio y calcio) en etapa vegetativa y reproductiva de un cultivo de mora (Rubus glaucus Benth.), ubicado en el municipio de Silvania (Cundinamarca). Tesis de maestría. Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia.

Casierra-Posada, F. y H.L. Hernández. 2006. Evapotranspiración y distribución de materia seca en plantas de mora (Rubus sp.) bajo estrés salino. Rev. Act. Divulg. Cient. UDCA 9(1), 85-95.

Casierra-Posada, F., G. Ebert y P. Lüdders. 2000. Efecto de la salinidad por cloruro de sodio sobre el balance de nutrientes en plantas de lulo (Solanum quitoense L.). Agron. Colomb. 17, 85-90.

Chinnusamy, V., A. Jagendore y Z. Jian-Kang. 2005. Understanding and improving salt tolerance in plants. Crop Sci. 45(2), 437-448. Doi: https://doi.org/10.2135/cropsci2005.0437

Colla, G., Y. Rouphael, M. Cardarelli, M. Tullio, C.M. Rivera y E. Rea. 2008. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol. Fert. Soils. 44(3), 501-509. Doi: https://doi.org/10.1007/s00374-007-0232-8

De Mendiburu, F. 2015. Agricolae: Statistical procedures for agricultural research. R package version 1.2-2. En: http://CRAN.R-project.org/package=agricolae, consulta: febrero de 2017.

Dodd, I.C. y W.J. Davies. 2004. Hormones and the regulation of water balance. En: Davies, P.J. (ed.). Plant hormones: Biosynthesis, signal transduction, action. Kluwer Academic Publ., Dordrecht, The Netherlands.

El-Desouky, S.A. and A.A.R. Atawia. 1998. Growth perfomance of citrus rootstocks under saline conditions. Alexandria J. Agric. Res. 43, 231-254.

Ghoulam, C., A. Foursy y K. Fares. 2002. Effects of salt stress on growth inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ. Exp. Bot. 47(1), 39-50. Doi: https://doi.org/10.1016/S0098-8472(01)00109-5

Giri, B., R. Kapoor y K.G. Mukerji. 2003. Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biol. Fert. Soils 38(3), 170-175. Doi: https://doi.org/10.1007/s00374-003-0636-z

Giri, B. y K.G. Mukerji. 2004. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza. 14(5), 307-312. Doi: https://doi.org/10.1007/s00572-003-0274-1

Giri, B., R. Kapoor y K.G. Mukerji. 2007. Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum, may be partly related to elevated K+/Na+ ratios in root and shoot tissues. Microbial Ecol. 54(4), 753-760. Doi: https://doi.org/10.1007/s00248-007-9239-9

Goykovic, V. y G. Saavedra. 2007. Algunos efectos de la salinidad en el cultivo del tomate y prácticas agronómicas de su manejo. Idesia 25(3), 47-58. Doi: https://doi.org/10.4067/S0718-34292007000300006

Grattan, S.R. y C.M. Grieve. 1999. Salinity mineral nutrient relations in horticultural crops. Sci. Hortic. 78 (1-4), 127-157. Doi: https://doi.org/10.1016/S0304-4238(98)00192-7

Jarstfer, A.G., P. Farmer-Koppenol y D.M. Sylvia. 1998. Tissue magnesium and calcium affect mycorrhiza development and fungal reproduction. Mycorrhiza. 7(5), 237-242. Doi: https://doi.org/10.1007/s005720050186

Kepenek, K. y F. Koyuncu. 2002. Effect of salt expression of resistance in some domestic foreign strawberry cultivars. Acta Hortic. 573, 289-295. Doi: https://doi.org/10.17660/ActaHortic.2002.573.33

Marschner, H. 2002. Mineral nutrition of higher plants. Academic Press, Amsterdam, The Netherlands.

Martínez, G.F. 1995. Elementos de la fisiología vegetal. Ediciones Mundi Prensa, Madrid, España.

Memon, S.A., X. Hou y L.J. Wang. 2010. Morphological analysis of salt stress response of pak Choi. Electron. J. Environ. Agric. Food Chem. 9(1), 248-254.

Miranda, D. 2011. Effect of salt stress on physiological parameters of cape gooseberry, Physalis peruviana L. Tesis de doctorado. Humboldt-Universität zu Berlin, Alemania.

Miranda, D., C. Ulrichs y G. Fischer. 2012. Efecto del cloruro de sodio (NaCl) sobre el crecimiento y colonización micorrízica en uchuva (Physalis peruviana L.). pp. 15-25. Avances de la investigación agronómica II. Facultad de Agronomía, Universidad Naconal de Colombia, Bogotá, Colombia.

Mohamedin, A., A. El-Kader y N. Badran, 2006. Response of sunflower (Helianthus annuus L.) to plants salt stress under different water table depths. J. Appl. Sci. Res. 2(12), 1175- 1184.

Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25, 239-250. Doi: https://doi.org/10.1046/j.0016-8025.2001.00808.x

Munns, R., S. Goyal y J. Passioura. 2005. Salinity and its mitigation. University of California, Davis, CA, USA.

Murkute, A.A., S. Sharma y S.K. Singh. 2006. Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. HortScience 33, 70-76.

NTC-ISO/IEC 17025. 2005. Requisitos generales para la competencia de los laboratorios de ensayo y de calibración. En: https://www.iso.org/obp/ui/#iso:std:iso-iec:17025:ed-2:v1:es; consulta: marzo de 2017.

Pérez, A. y V. Peroza. 2013. Micorrizas arbusculares asociadas al pasto angleton (Dichathium aristatum Benth.) en fincas ganaderas del municipio de Tolú, Sucre-Colombia. Rev. MVZ 18(1), 3362-3369. Doi: https://doi.org/10.21897/rmvz.199

Rabie, G.H y A.M. Almadini. 2005. Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr. J. Biotechnol. 4, 210-222.

Rilling, M.C. y D.L. Mummey. 2006. Mycorrhizas and soil structure. New Phytologist 171, 41-53. Doi: https://doi.org/10.1111/j.1469-8137.2006.01750.x

Roveda, G., L. Cabra, M. M. Ramírez y A. Peñaranda. 2007. Efecto de las micorrizas arbusculares sobre la aclimatación y endurecimiento de microplántulas de mora (Rubus glaucus). Corpoica Ciencia Tecnol. Agropec. 8(1), 28-36. Doi: https://doi.org/10.21930/rcta.vol8_num1_art:80

Rui, L., S. Wei, C. Mu-xiang, J. Cheng-jun, W. Min e Y. Bo-ping. 2009. Leaf anatomical changes of Burguiera gymnorrhiza seedlings under salt stress. J. Trop. Subtrop. Bot. 17(2), 169-175.

Ruiz-Lozano, J.M. y R. Azcón. 2000. Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp from saline soils and Glomus deserticola under salinity. Mycorrhiza 10(3), 137-143. Doi: https://doi.org/10.1007/s005720000075

Saint-Etienne, L., S. Paul, D. Imbert, M. Dulormne, F. Muller, A. Toribio, C. Plenchette y A.M. Bâ. 2006. Arbuscular mycorrhizal soil infectivity in a stand of the wetland tree Pterocarpus officinalis along a salinity gradient. For. Ecol. Manag. 232(1-3), 86-89. Doi: https://doi.org/10.1016/j.foreco.2006.05.046

Sharifi, M., M. Ghorbanli y H. Ebrahimzadeh. 2007. Improved growth of salinity-stressed soybean after inoculation with pre-treated mycorrhizal fungi. J. Plant Physiol. 164(9), 1144-1151. Doi: https://doi.org/10.1016/j.jplph.2006.06.016

Sheng, M., M. Tang, H. Chan, B. Yang, F. Zhang y Y. Huang. 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18 (6-7), 287-296. Doi: https://doi.org/10.1007/s00572-008-0180-7

Shokri, S. y B. Maadi. 2009. Effects of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrium plants under salinity stress. J. Agron. 8, 79-83. Doi: https://doi.org/10.3923/ja.2009.79.83

Smith, E. y D.J. Read. 2008. Mycorrhizal symbiosis. Academic Press, London, UK.

Ulloa, L.N., N.A. Vargas, D. Miranda y G. Fischer. 2006. Efecto de la salinidad sobre los parametros de desarrollo en especies horticolas cultivadas en sistemas sin suelo. pp. 53-76. En: Florez, V.J., A. de la C. Fernandez, D. Miranda, B. Chaves y J.M. Guzman (eds.). Avances sobre fertirriego en la floricultura colombiana. Unibiblos, Universidad Nacional de Colombia, Bogotá, Colombia.

Valenzuela, J.L., M. Guzmán, A. Sánchez, A. del Río y L. Romero. 1993. Relationship between biochemical indicators and physiological parameters of nitrogen and physiological plant age. En: Fragoso, M. y M. van Beusichem (eds.). Optimization of plant nutrition. Kluwer Academic Publ., Dordrecht, The Netherlands. Doi: https://doi.org/10.1007/978-94-017-2496-8_40

Yano-Melo, A.M., O.J. Saggin y L.C. Maia. 2003. Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agric. Ecosyst. Environ. 95(1), 343-348. Doi: https://doi.org/10.1016/S0167-8809(02)00044-0

Zuccarini, P. 2007. Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant Soil Environ. 53, 283-289.

Zuccarini, P. y P. Okurowska. 2008. Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J. Plant Nutr. 31, 497-513. Doi: https://doi.org/10.1080/01904160801895027

Planta de mora en estado vegetativo. Foto: W.A. Cardona

Published

2018-01-06

How to Cite

Cardona, W. A., Gutiérrez D., J. S., Monsalve C., O. I., & Bonilla C., C. R. (2018). Salinity effect on the vegetative growth of Andean blackberry plants (<i>Rubus glaucus</i> Benth.) inoculated and non-inoculated with mycorrhizal fungi. Revista Colombiana De Ciencias Hortícolas, 11(2), 253–266. https://doi.org/10.17584/rcch.2017v11i2.6109

Issue

Section

Fruits section

Metrics