Skip to main navigation menu Skip to main content Skip to site footer

Fruit growth and fruit drop in banana passion fruit plants (<i>Passiflora tripartita</i> var. mollissima)

Flowers and fruits of banana passionfruit in development. Photo: F. Casierra-Posada

Abstract

Growth is an irreversible increase in the size of plant organs that may involve changes in their form, and is accompanied by processes such as morphogenesis and cell differentiation.  The mathematical expression of fruit growth in cultivated plants allows one to estimate aspects related to production, and contributes to defining protocols applicable to the agronomic management of the crop.  A field trial was carried out in Caldas (Boyaca, Colombia), to describe the dynamics of different variables involved in the growth and fall of fruits in Banana passion fruit plants (Passiflora tripartita var. mollissima).  Mathematical models were developed for variables commonly used to describe fruit growth.  The evaluated variables presented values of R2 higher than 0.98, except for the absolute growth rate of fruit length and at the time of fruit drop, whose R2 values were 0.82 and 0.76, respectively. The results showed that the relative growth rate presented maximum values up to 22 days after floral opening, whereas the absolute growth rate presented the highest value between 15-22 days after floral opening.  The length and width of the fruits showed a sigmoid-shaped curve, typical of other previously reported Passifloraceae. The maximum fruit fall occurred at 15 days after the floral opening and it was found that only 38.9% of the flowers develop fruits that reach the time of harvest. This information contributes to the technical management and optimal production of banana passion fruit.

Keywords

Relative growth rate, absolute growth rate, length/width ratio, fruit weight, total soluble solids.

PDF

References

  1. Arjona, H.E., F.B. Matta, and J.A. Garner. 1991. Growth and composition of passion fruit (Passiflora edulis) and mayop (P. incarnata). HortScience 26(7), 921-923.
  2. Arseneault, M.H. and J.A. Cline. 2016. A review of apple preharvest fruit drop and practices for horticultural management. Sci. Hortic. 211, 40-52. Doi: https://doi.org/10.1016/j.scienta.2016.08.002
  3. Beadle, C.L. 1993. Growth analysis. pp. 36-46. In: Hall, D.O., J.M.O. Scurlock, H.R. Bolhàrd-Nordenkampf, R.C. Leegood, and S.P. Long (eds.). Photosynthesis and production in a changing environment: A field and laboratory manual. Chapman and Hall, London, UK.
  4. Campos, T. 2001. La curuba: su cultivo. IICA, Bogota, Colombia.
  5. Casierra-Posada, F., D.I. Hernández, P. Lüdders, and G. Ebert. 2003. Crecimiento de frutos y ramas del manzano ‘Anna’ (Malus domestica Borkh.) en los altiplanos colombianos. Agron. Colomb. 21, 69-73.
  6. Casierra-Posada, F., V.E. Barreto, and O.L. Fonseca. 2004. Crecimiento de frutos y ramas de duraznero (Prunus persica L. Batsch, cv. ‘Conservero’) en los altiplanos colombianos. Agron. Colomb. 22 (1), 40-45.
  7. Casierra-Posada, F., M.C. Cardozo, and J.F. Cárdenas-Hernández. 2007. Análisis del crecimiento en frutos de tomate (Lycopersicon esculentum Mill.) cultivados bajo invernadero. Agron. Colomb. 25(2), 299-305.
  8. Casierra-Posada, F. and M.C. Cardozo. 2009. Análisis básico del crecimiento en frutos de tomate (Lycopersicon esculentum Mill, cv. ‘Quindío’) cultivados a campo abierto. Rev. Fac. Nal. Agr. Medellín 62(1), 4815-4822.
  9. Casierra-Posada, F. and A. Jarma-Orozco. 2016. Nutritional composition of Passiflora species. pp. 517-534. In: Simmonds, M.S.J. and V.R. Preedy (eds.). Nutritional composition of fruit cultivars. Academic Press, San Diego, CA, USA.
  10. Chaparro, D.C., M.E. Maldonado, M.C. Franco, and L.A Urango. 2015. Características nutricionales y antioxidantes de la fruta curuba larga (Passiflora mollisima Bailey). Biotecnol. Sector Agropecu. Agroind. 13(1), 120-128.
  11. Corner, E.J. 1976. The seeds of the dicotyledons. Vol. I and II. Cambridge University Press, Cambridge, UK.
  12. Esquerre-Ibañez, B., C. Rojas-Idrogo, S. Llatas-Quiroz, and G.E. Delgado-Paredes. 2014. El género Passiflora L. (Passifloraceae) en el departamento de Lambayeque, Perú. Acta Bot. Malacitana 39, 55-70.
  13. Estornell, L.H., J. Agustí, P. Merelo, M. Talón, and F.R. Tadeo. 2013. Elucidating mechanisms underlying organ abscission. Plant Sci. 199-200C, 48-60. Doi: https://doi.org/10.1016/j.plantsci.2012.10.008
  14. Franco, G., J.R. Cartagena, and G. Correa. 2014. Analysis of purple passion fruit (Passiflora edulis Sims) growth under ecological conditions of the Colombian lower montane rain forest. Rev. UDCA Act. Div. Cient. 17(2), 391-400.
  15. Gillaspy, G., H. Ben-David, and W. Gruissem. 1993. Fruits: A developmental perspective. Plant Cell 5, 1439-1451. Doi: https://doi.org/10.1105/tpc.5.10.1439
  16. Hunt, R. 1982. Plant growth curves: The functional approach to plant growth analysis. Edward Arnold, London, UK.
  17. Hunt, R. 1990. Basic growth analysis. Plant growth analysis for beginners. Unwin Hyman, Boston, MA, USA. Doi: https://doi.org/10.1007/978-94-010-9117-6
  18. Jorquera-Fontena, E., M. Génard, A. Ribera-Fonseca, and N. Franck. 2017. A simple allometric model for estimating blueberry fruit weight from diameter measurements. Sci. Hortic. 219, 131-134. Doi: https://doi.org/10.1016/j.scienta.2017.03.009
  19. Malacrida, C.R. and N. Jorge. 2012. Yellow passion fruit seed oil (Passiflora edulis f. flavicarpa): physical and chemical characteristics. Braz. Arch. Biol. Technol. 55 (1), 127-134. Doi: https://doi.org/10.1590/S1516-89132012000100016
  20. Niklas, K.J. 1994. Plant allometry: The scaling of form and process. University Chicago Press, Chicago, IL, USA.
  21. Ocampo, J.A., G. Coppens d’Eeckenbrugge, M.T. Restrepo, A. Jarvis, M.H. Salazar, and C.M. Caetano. 2007. Diversity of Colombian Passifloraceae: biogeography and an updated list for conservation. Biota Colomb. 8(1), 1-45.
  22. Reina, C.E. 1995. Manejo, poscosecha y evaluación de la calidad de curuba (Passiflora mollissima) que se comercializa en la ciudad de Neiva. Universidad Surcolombia. Facultad de Ingeniería, Neiva, Colombia.
  23. Sexton, R. and J. Roberts. 1982. Cell biology of abscission. Annu. Rev. Plant Physiol. 33, 133-162. Doi: https://doi.org/10.1146/annurev.pp.33.060182.001025
  24. Smith, H.M. and A. Samach. 2013. Constraints to obtaining consistent annual yields in perennial tree crops. I: heavy fruit load dominates over vegetative growth. Plant Sci. 207, 158-167. Doi: https://doi.org/10.1016/j.plantsci.2013.02.014
  25. Stikić, R., Z. Jovanović, B. Vucelić-Radović, M. Marjanović, and S. Savić. 2015. Tomato: a model species for fruit growth and development studies. Bot. Serbica 39(2), 95-102.
  26. Téllez, C.P., G. Fischer, and O.C. Quintero. 2007. Comportamiento fisiológico y fisicoquímico de frutos de curuba (Passiflora mollissima Bailey) encerados y almacenados a dos temperaturas. Rev. Colomb. Cienc. Hortíc. 1(1), 67-80. Doi: https://doi.org/10.17584/rcch.2007v1i1.1146
  27. Valdebenito, D., S. Tombesi, A. Tixier, B. Lampinen, P. Brown, and S. Saa. 2017. Spur behavior in Almond trees (Prunus dulcis [Mill.] DAWebb): effects of flowers, fruit, and “June drop” on leaf area, leaf nitrogen, spur survival and return bloom. Sci. Hortic. 215, 15-19. Doi: https://doi.org/10.1016/j.scienta.2016.11.050
  28. Vanclay, J.K. 1994. Modelling forest growth and yield. CAB International, Wallingford, UK.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.