Skip to main navigation menu Skip to main content Skip to site footer

Stress for aluminum in plants: reactions in the soil, symptoms in plants and amelioration possibilities. A review

Abstract

In the most acid soils worldwide, covering up to 40% of the surface potentially usable for crops, aluminum is the most growth and yield limiting factor. It is estimated that about 85% of the total land surface in Colombia is composed by acid soils where the productivity of most food crops is severely restricted due to soil acidity and aluminum toxicity. In acid mineral soils with pH values below 5,5 a large proportion of the cation exchange sites of clay minerals is occupied by aluminum where it specially replaces other polyvalent cations as Mg2+ and Ca2+ and simultaneously acts as a strong absorber of phosphate. The strong competing effect of aluminum on calcium and magnesium uptake explains why the molar ratios of Ca/Al, Mg/Al or (Ca+Mg+K)/Al in the soil or nutrient solutions are sometimes better parameters for predicting of the risk of aluminum-induced bases deficiency than the concentrations of any individual elements. The initial effect of aluminum stress is the inhibition of root growth, moreover aluminum accumulation is an indicator of Al-sensitivity takes place in the root apex; Al-resistance mechanisms are confined mainly to the root apex; and callose formation is induced in apical cells of the roots. Some amelioration possibilities to aluminum stress are: application of organic matter to the soil, root colonization with mycorrhizas, application of organic acids to the nutrient solution, foliar application of phosphorus, and lime application to the soil, Al-tolerant plants selection, and transgenic tolerant plants.

Keywords

pH, Acid soils, Al-tolerance

PDF (Español)

References

  1. Adams, F. y B.L. Moore. 1983. Chemical factors affecting root growth in subsoil horizons of coastal plain soils. Soil Sci. Soc. Amer. J. 47, 99-102.
  2. Aniol, A. 1991. Genetics of acid tolerant plant. pp. 1007-1017. En: Wright, R.J.; C. Baliger y R.P. Murrmann (eds.) Plant-Soil interactions at low pH. Kluwer Acad. Publ., Dordrecht.
  3. Aniol, A. 1996. The variability of aluminum tolerance among triticale strains and cultivars bred in poland. pp. 461-465 En: Guedes-Pinto, P.; N. Darvey y V.P. Carnide (eds.). Triticale: Today and tomorrow. Kluwer Acad. Publ., Dordrecht.
  4. Aponte de L. M.E. y G. Valencia A. 1983. Toxicidad de aluminio en plantas de café. Cenicafe 34(3), 61-97.
  5. Baier, A.C., D.J. Somers y P. Gustafson. 1996. Aluminum tolerance in triticale, wheat and rye. pp. 437-444. En: Guedes-Pinto, P.; N. Darvey y V.P. Carnide (eds.). Triticale today and tomorrow. Kluwer Acad. Publ., Dordrecht.
  6. Bartlett, R.J. y D.C. Riego. 1972. Effect of chelation on the toxicity of aluminum. Plant Soil 37, 419-423.
  7. Berthelin, J., G. Belgy, D. Boymond y C. Leyval. 1993. Microbial biosorption and ion accumulation of metals in field conditions in heavy metal polluted soils and around uranium mining wastes. En: Proc. FEMS Symposium Metals-Microorganisms: Relationships and Applications. Metz, Francia.
  8. Blancaflor, E.B., D.L. Jones y S. Gilroy. 1998. Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize. Plant Physiol. 118(1), 159-172.
  9. Calbo, A.C. y J. Cambraia. 1980. Efeito do aluminio sobre a composição mineral de dois cultivares de sorgo (Sorghum bicolor L. Moench). Revista Ceres 37, 379-384.
  10. Cambraia, J., M.A. da Silva, M.A.O. Cano y R. Santana. 1991. Método simples para avaliação de cultivares de sorgo quanto a tolerancia ao alumínio. Rev. Bras. Fisiol. Veg. 3(2), 87-95.
  11. Casierra-Posada, F. 2001. Fundamentos fisiológicos, bioquímicos y anatómicos del estrés por aluminio en vegetales. Revista Comalfi 28(2), 8-19.
  12. Casierra-Posada, F. 2002. Alteraciones inducidas por aluminio en el citoesqueleto de las plantas. Revista Comalfi 29(2), 23-30.
  13. Casierra-Posada, F. y J.F. Cárdenas-Hernández. 2007. Influencia del aluminio sobre el crecimiento de la raíz en coliflor (Brassica oleracea L., var. Botrytis, Hib. ‘Nevada F1’). Revista UDCA Actualidad & Divulgación Científica 10(1), 149-157.
  14. Caniato, F.F., C.T. Guimarães, R.E. Schaffert, V.M.C. Alves, L.V. Kochian, A. Borém, P.E. Klein y J.V. Magalhaes. 2007. Genetic diversity for aluminum tolerance in sorghum. Theor. Appl. Genet. 114(5), 863-876.
  15. Collet, L., C. de Leon y W.J. Horst, 2000. Screening maize for adaptation to aluminium-toxic soils of Colombia. Tagungsband 3.3. Deutscher Tropentag 2000. Hohenheim, Alemania.
  16. Colpaert, J.V. y J.A. van Assche. 1992. Zinc toxicity in ectomycorrhizal Pinus silvestris. Plant Soil 143, 201-211.
  17. Cumming, J.R. y L.H. Weinstein. 1990. Aluminum-mycorrizal interactions in the physiology of pitch pine seedlings. Plant Soil 125, 7-18.
  18. De la Fuente, J.M., V. Ramírez-Rodríguez, L. Cabrera-Ponce y L. Herrera-Estrella. 1997. Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276, 1566-1568.
  19. De Lima, M. y L. Copeland. 1994. Changes in the intrastructure of the root tip of wheat following exposure to aluminum. Aust. J. Plant Physiol. 21, 85-94.
  20. Duong, T.P. y C.N. Diep. 1986. An inexpensive cultural system using ash for cultivation of soybean (Glycine max (L.) Merrill) on acid clay soils. Plant Soil 96, 225-237.
  21. Ezaki, B., M. Sivaguru, R. Gardner y H. Matsumoto. 2000. Saccharomyces cerevisiae as a model system for the study of aluminum (Al) resistance mechanism in plants. Recent. Res. Dev. Microbiology 4, 67-75.
  22. Foy, C.D. 1988. Plant adaptation to acid soil, aluminium-toxic soils. Commun. Soil Sci. Plant Anal. 19, 959-987.
  23. Ginting, S., B.B. Johnson y S. Wilkens. 1998. Alleviation of aluminum phytotoxicity on soybean growth by organic anions in nutrient solutions. Aust. J. Plant Physiol. 25, 901-908.
  24. Guerrero, R. 1991. La acidez del suelo - Su naturaleza, sus implicaciones y su manejo. pp. 141-163. En: Silva M. (ed.). Fundamentos para la interpretación de análisis de suelos, plantas y aguas para riego. Sociedad Colombiana de la Ciencia de Suelo. Montoya & Araújo Ltda. Impresiones, Bogotá.
  25. Hue, N.V. y I. Amien. 1989. Aluminium detoxification with green manure. Commun. Soil Sci. Plant Anal.
  26. , 1499-1511.
  27. Hue, N.V., G.R. Craddock y F. Adams. 1986. Effect of organic acids on aluminum toxicity in subsoils. Soil Sci. Soc. Amer. J. 50, 28-34.
  28. Instituto Colombiano Agropecuario. 1992. Fertilización en diversos cultivos – Quinta aproximación. Manual de asistencia técnica No. 25. Produmedios. Bogotá. 64 p.
  29. Kerven, G.L., D.G. Edwards, C.J. Asher y S. Kokot. 1989. Aluminium determination in soil solution . II. Short-term colorimetric procedures for the measurement of inorganic aluminium in the presence of organic acid ligands. Aust. J. Soil Res. 27, 91-102.
  30. Kloke, A. 1978. Der Einfluß von Schadgasen und Schad-stoffen auf die Vegetationsdecke. En: Olschowy, G. editor. Natur- und Umweltschutz in der BRD. Paul Parey, Berlin y Hamburgo.
  31. Kochian, L.V. 1995. Cellular mechanisms of aluminum toxicity and resistance in plants. Annu. Rev. Plan. Physiol. Mol. Biol. 46, 237-260.
  32. Larsen, P.B., L.M. Stenzler, C.Y. Tai, J. Degenhardt, S.H. Howell y L.V. Kochian. 1997. Molecular and physiological analysis of Arabidopsis mutants exhibiting altered sensitivities to aluminum. Plant Soil 192, 3-7.
  33. Ma, J.F. 2000. Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol. 41(4), 383-390.
  34. Marschner, H. 1995. Mineral nutrition of higher plants. Segunda edición. Academic Press, Londres. pp. 606-613.
  35. Marschner, P., A. Klam, G. Jentschke y D.L. Godbold. 1999. Aluminium and lead tolerance in ectomicorrhizal fungi. J. Plant Nutr. Soil Sci. 162, 281-286.
  36. Matzner, E. y J. Prenzel. 1992. Acid deposition in german solling area - Effects on soil solution chemistry and Al movilization. Water, Air, Soil Pollut. 61, 221-234.
  37. Méndez Diniz, V.P. y M.E. Ribeiro Calbo. 1990. Efeito da aplicação foliar de fósforo sobre a toxidez de alumínio em plantas de tomate. Rev. Bras. Fisiol. Vegetal 2(2), 57-61.
  38. Oettler, G., R. Geiger, S. Wiethölter, C.S. Gaus, C.U. Hesemann y W.J. Horst. 1997. Methodische und genetische Untersuchungen zur Aluminiumtoleranz von Triticale. Vortr. Pflanzenzüchtung 38, 41-56.
  39. Ownby, J.D. y H.R. Popham. 1989. Citrate reverses the inhibition of wheat root growth caused by aluminum. J. Plant Physiol. 135, 588-591.
  40. Pintro, J., J. Barloy y P. Fallavier. 1995. Aluminium toxicity in corn plants cultivated in a low ionic strength nutrient solution. I. Discrimination of two corn cultivars. Rev. Bras. Fisiol. Veg. 7(2), 121-128.
  41. Qiu-Ying T., S. Dong-Hua, Z. Min-Gui y Z. Wen-Hao. 2007. Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytol. 174, 322-331.
  42. Ryan, P.R., J.E. Shaff y L.V. Kochian. 1992. Aluminum toxicity in roots: Correlation among ionic currents, ion fluxes, and root elongation in aluminum-sensitive and aluminum-tolerant wheat cultivars. Plant Physiol. 99, 1193-1200.
  43. Scheffer, F. y P. Schachtschabel. 1995. Lehrbuch der Boden- kunde. Ferdinand Enke, Stuttgart. pp. 313-316.
  44. Sivaguru, M.; H. Matsumoto y W. Horst. 2000. Control of the response to aluminum stresss. En: Nick, P. (ed.). Plant microtubules: Potential for microbiology. Springer, Heidelberg. pp. 103-120.
  45. Suthipradit, S., D.G. Edwards y C.J. Asher. 1990. Effects of aluminium on tap-root elongation of soybean (Glycine max), cowpea (Vigna unguiculata) and greengram (Vigna radiata) grown in the presence of organic acids. Plant Soil 124, 233-237.
  46. Tobin, J.M., D.G. Cooper y R.J. Neufeld. 1990. Investigations of the mechanism of metal uptake by Rhyzopus arrhizus biomass. Enzime Microb. Technol. 12, 591-595.
  47. Wagatsuma, T., M. Kaneko y Y. Hayasaka. 1987. Destruction process of plant roots cells by aluminum. Soil Sci. Plant Nutr. 33, 16-175.
  48. Wallnöfer, P.R. y G. Engelhardt. 1995. Schadstoffe aus dem Boden. 118-140 p. En: Hock, B. y E. Elstner (eds.). Schadwirkungen auf Pflanzen. Académica Spektrum, Berlin.
  49. Wissemeier, A.H., G. Hahn y H. Marschner. 1998. Callose in roots of norway spruce (Picea abies (L.) Karst) is a senditive parameter for aluminium supply at a forest site (Höglwald). Plant Soil 199, 53-57.
  50. Wright, R.J. 1989. Soil aluminum toxicity and plant growth. Commun. Soil Sci. Plant Anal. 20, 1479-1497.
  51. Zapata H.R.D. 2004. La química de la acidez del suelo. Disponible en: http://www.unalmed.edu.co/%7Erdzapata/AcidezdelSuelo.zip; consulta: 12 de mayo de 2007.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 1 2 3 

You may also start an advanced similarity search for this article.