Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Receptividad estigmática e hibridación artificial en frijol caupí (Vigna unguiculata L. (Walp.))

Hybridization in cowpea beans. Photo: H. Araméndiz-Tatis

Resumen

El mejoramiento genético clásico, basado en la selección de individuos superiores y cruzamientos dirigidos, demanda conocer aspectos de la biología floral y reproductiva del fríjol caupí. La investigación se llevó a cabo en la Universidad de Córdoba, mediante dos experimentos: en el primero, se evaluó la receptividad estigmática como tiempo de respuesta al peróxido de hidrógeno, bajo el diseño bloques completos aleatorizados con arreglo factorial 3×4 (tres genotipos: Caupicor 50, Missouri y BRS Milenium, y cuatro horas del día: 7:00 y 9:00 AM, 3:00 y 5:00 PM) y tres repeticiones; en el segundo, se evaluó el porcentaje de cruzamientos viables, bajo un diseño Bloques Completos al azar con arreglo factorial 2×2 (dos cruzamientos: Missouri × IT86 y Missouri × BRS Milenium, dos métodos: 1 (mañana) y 2 (tarde), y cuatro repeticiones. La mayor receptividad estigmática se registró en los genotipos BRS Milenium y Missouri, con tiempo de 3,28±0,07 y 2,01±0,12 min a las 7:00 y 9:00 AM, mientras que Caupicor 50, tiempo de 1,80±0,09 min a las 3:00 AM. Las hibridaciones artificiales realizadas por la mañana registraron los mayores cruzamientos viables, 78,6% en Missouri × BRS Milenium y 57,1% en Missouri × IT86. Por tanto, las hibridaciones artificiales deben hacerse en horas de la mañana debido a un ambiente más propicio para la germinación del grano de polen, dada la mayor receptividad estigmática.

Palabras clave

Estigma floral, Peroxidasa, Emasculación, Antesis, Polinización

PDF (English)

Citas

  1. Araméndiz-Tatis, H., C. Cardona-Ayala, A. Jarma, E. Combatt, J. Jaraba, T. Mercado, M. Espitia-Camacho, C. de Paula, Y. Pastrana, and J. Hernández. 2019. Manejo agronómico del frijol caupí en el Caribe colombiano. Universidad de Córdoba, Montería, Colombia.
  2. Bheemanahalli, R., V.J. Sunoj, G. Saripalli, P.V. Prasad, H.S. Balyan, P.K. Gupta, N. Grant, and S.K. Jagadish. 2019. Quantifying the impact of heat stress on pollen germination, seed set, and grain filling in spring wheat. Crop Sci. 59(2), 684-696. Doi: https://doi.org/10.2135/cropsci2018.05.0292
  3. Boukar, O., C.A. Fatokun, P.A. Roberts, M. Abberton, B.L. Huynh, T.J. Close, S.K. Boahen, T.J. Higgins, and J.D. Ehlers. 2015. Cowpea. pp. 219-250. In: De Ron, A.M. (ed.). Grain legumes: Handbook of plant breeding. Vol. 10. Springer. New York, NY. Doi: https://doi.org/10.1007/978-1-4939-2797-5_7
  4. Boukar, O., A. Togola, S. Chamarthi, N. Belko, H. Ishikawa, K. Suzuki, and C. Fatokun. 2019. Cowpea [Vigna unguiculata (L.) Walp.] breeding. pp. 201-243. In: Al-Khayri, J.M., S.M. Jain, and D.V. Johnson (eds.). Advances in plant breeding strategies: legumes. Springer, Cham, Switzerland. Doi: https://doi.org/10.1007/978-3-030-23400-3_6
  5. Chen, F., W. Yuan, X. Shi, and Y. Ye. 2013. Evaluation of pollen viability, stigma receptivity and fertilization success in Lagerstroemia indica L. Afr. J. Biotechnol. 12(46), 6460-6467. Doi: https://doi.org/10.5897/AJB11.3594
  6. Crispim, J.G., E.R. Rêgo, M.M. Rêgo, N.F.F. Nascimento, and P.A. Barroso. 2017. Stigma receptivity and anther dehiscence in ornamental pepper. Hortic. Bras. 35(4), 609-612. Doi: https://doi.org/10.1590/S0102-053620170421
  7. Dresselhaus, T. and N. Franklin-Tong. 2013. Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol. Plant 6(4), 1018-1036. Doi: https://doi.org/10.1093/mp/sst061
  8. Galen, C. and R.C. Plowright. 1987. Testing the accuracy of using peroxidase activity to indicate stigma receptivity. Can. J. Bot. 65(1), 107-111. Doi: https://doi.org/10.1139/b87-015
  9. Gill, M. 2014. Pollen storage and viability. Int. J. Bot. Res. 4(5), 1-18.
  10. Giorno, F., M. Wolters-Arts, C. Mariani, and I. Rieu. 2013. Ensuring reproduction at high temperatures: the heat strees response during anther and pollen development. Plants 2(3), 489-506. Doi: https://doi.org/10.3390/plants2030489
  11. Gupta, R., H. Sutradhar, S.K. Chakrabarty, M.W. Ansari, and Y. Singh. 2015. Stigmatic receptivity determines the seed set in Indian mustard, rice and wheat crops. Commun. Integr. Biol. 8(5), e1042630. Doi: https://doi.org/10.1080/19420889.2015.1042630
  12. Jiang, Y., R. Lahlali, C. Karunakaran, T.D. Warkentin, A.R. Davis, and R.A. Bueckert. 2019. Pollen, ovules, and pollination in pea: Success, failure, and resilience in heat. Plant Cell Environ. 42(1), 354-372. Doi: https://doi.org/10.1111/pce.13427
  13. Kaushal, N., K. Bhandari, K.H. Siddique, and H. Nayyar. 2016. Food crops face rising temperatures: an overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food Agric. 2(1), 1134380. Doi: https://doi.org/10.1080/23311932.2015.1134380
  14. Khattak, G.S.S., I. Saeed, and T. Muhammad. 2009. Flowers’ shedding under high temperature in mungbean (Vigna radiata (l.) Wilczek). Pak. J. Bot. 41(1), 35-39.
  15. Kumar, R.R., S. Goswami, M. Shamim, U. Mishra, M. Jain, K. Singh, J.P. Singh, K. Dubey, S. Singh, G.K. Rai, G. Singh, H. Pathak, V. Chinnusamy, and S. Praveen. 2017. Biochemical defense response: characterizing the plasticity of source and sink in spring wheat under terminal heat stress. Front. Plant Sci. 8, 1603. Doi: https://doi.org/10.3389/fpls.2017.01603
  16. Li, C., J. Su, X. Liu, S. Chen, and L. He. 2014. Pistillate flower development and stigma receptivity of Euphorbia pulcherrima. Agric. Sci. Technol. 15(10), 1671-1675.
  17. Maity, A., S.K. Chakarbarty, P. Pramanik, R. Gupta, S.S. Parmar, and D.K. Sharma. 2019. Response of stigma receptivity in CMS and male fertile line of Indian mustard (B. juncea) under variable thermal conditions. Int. J. Biometeorol. 63, 143-152. Doi: https://doi.org/10.1007/s00484-018-1645-9
  18. Nameirakpam, B. and V.K. Khanna. 2018. Studies on crossability and genetic diversity in cowpea (Vigna unguiculata L. Walp.). Int. J. Environ. Sci. Natural Resour. 13(1), 8-16. Doi: https://doi.org/10.19080/ijesnr.2018.13.555852
  19. Nunes, E.D., C.A.F. Santos, A.G. Medeiros, L.S. Diniz, and S.R. Costa. 2010. Hibridação artificial em feijão-caupi (Vigna unguiculata Walp) em diferentes cultivares. p. 18. In: Encontro de Genética Do Nordeste: Genética, Biodiversidade e Conservação. Embrapa Semiárido; Sociedade Brasileira de Genética. Jequié, Brazil.
  20. Osborn, M.M., P.G. Kevan, and M.A. Lane. 1988. Pollination biology of Opuntia polyacantha and Opuntia phaecantha (Cactaceae) in Southern Colorado. Pl. Syst. Evol. 159, 85-94. Doi: https://doi.org/10.1007/bf00937427
  21. Palencia, G., T. Mercado, and E. Combatt. 2006. Estudio agroclimático del departamento de Córdoba. Universidad de Cordoba, Montería, Colombia.
  22. Parrotta, L., C. Faleri, M. Cresti, and G. Cai. 2016. Heat stress affects the cytoskeleton and the delivery of sucrose synthase in tobacco pollen tubes. Planta 243(1), 43-63. Doi: https://doi.org/10.1007/s00425-015-2394-1
  23. Priya, M., L. Sharma, R. Kaur, H. Bindumadhava, R.M. Nair, K.H.M. Siddique, and H. Nayyar. 2019. GABA (γ-aminobutyric acid), as a thermo-protectant, to improve the reproductive function of heat-stressed mungbean plants. Sci. Rep. 9(1), 7788. Doi: https://doi.org/10.1038/s41598-019-44163-w
  24. Poonia, A., D.S. Phogat, and D. Phougat. 2018. Cowpea breeding: status and perspectives. pp. 50-56. In: Nigam, R., J. Singh, W. Hasan, and N. Kapoor (eds.). Advances in environment and agriculture biotechnology. Weser Books, Zittau, Germany.
  25. Rangkham, T. and V.K. Khanna. 2018. Studies on hybridization and genetic diversity in cowpea (Vigna unguiculata L). Open Acc. J. Oncol. Med. 2(1), 125-134. Doi: https://doi.org/10.32474/OAJOM.2018.02.000132
  26. Sage, T.L., S. Bagha, V. Lundsgaard-Nielsen, H.A. Branch, S. Sultmanis, and R.F. Sage. 2015. The effect of high temperature stress on male and female reproduction in plants. Field Crops Res. 182, 30-42. Doi: https://doi.org/10.1016/j.fcr.2015.06.011
  27. Silva, L.A.C., M.S. Pagliarini, S.A. Santos, and C.B. Valle. 2013. Stigma receptivity, mode of reproduction, and mating system in Mesosetum chaseae Luces (Poaceae), a native grass of the Brazilian Pantanal. Genet. Mol. Res. 12(4), 5038-5045. Doi: https://doi.org/10.4238/2013.October.25.2
  28. Sita, K., A. Sehgal, J. Kumar, S. Kumar, S. Singh, K.H.M. Siddique, and H. Nayyar. 2017. Identification of high-temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Front. Plant Sci. 8, 744. Doi: https://doi.org/10.3389/fpls.2017.00744
  29. Snider, J.L., D.M. Oosterhuis, B.W. Skulman, and E.M. Kawakami. 2009. Heat stress‐induced limitations to reproductive success in Gossypium hirsutum. Physiol. Plant. 137(2), 125-138. Doi: https://doi.org/10.1111/j.1399-3054.2009.01266.x
  30. Sorkheh, K., R. Azimkhani, M. Nastaran, M. Chaleshtori, J. Halasz, S. Ercisli, and C. Koubouris. 2018. Interactiva effects of temperature and genotype on almond (Prunus dulcis L.) pollen germination and tube length. Sci. Hortic. 227, 162-168. Doi: https://doi.org/10.1016/j.scienta.2017.09.037
  31. Thimmaiah, M.R., S.B. Choudhary, H.K. Sharma, A.A. Kumar, H. Bhandari, J. Mitra, and P.G. Karmakar. 2018. Late-acting self-incompatibility: a barrier to self-fertilization in sunnhemp (Crotalaria juncea L.). Euphytica 214(2), 19. Doi: https://doi.org/10.1007/s10681-017-2096-9
  32. Thuzar, M., A.B. Puteh, N.A.P. Abdullah, M.B. Lassim, and K. Jusoff. 2010. The effects of temperature stress on the quality and yield of soya bean [(Glycine max L.) Merrill.]. J. Agric. Sci. 2(1), 172-179. Doi: https://doi.org/10.5539/jas.v2n1p172
  33. Ting, P., Y. Tu, C. Lin, H. Chang, L. Chen, and L. Chan. 2014. Reproductive fitness of outcrossed hybrids between transgenic broccoli (Brassica oleracea) carrying the ipt transgene and conventional varieties of kale, broccoli and cauliflower. Pak. J. Bot. 46(4), 1437-1444.
  34. Tondonba, S.P., V.K. Khanna, and V.U. Tejaswini. 2018. Crossability studies and genetic diversity analysis in blackgram (Vigna mungo L. Hepper) using molecular markers. Agrotechnol. 7(2), 179. Doi: https://doi.org/10.4172/2168-9881.1000179
  35. Vargas-Araújo, J., M. Andrade-Rodríguez, O. Villegas-Torres, A. Castillo-Gutiérrez, M. Colinas-León, E. Avitia-García, and I. Alia-Tejacal. 2017. Características reproductivas de nueve variedades de nochebuena (Euphorbia pulcherrima Willd. Ex Klotzch). Rev. Mex. Cienc. Agríc. 8(2), 295-306. Doi: https://doi.org/10.29312/remexca.v8i2.51
  36. Yu, B., L. Liu, and T. Wang. 2019. Deficiency of very long chain alkanes biosynthesis causes humidity‐sensitive male sterility via affecting pollen adhesion and hydration in rice. Plant Cell Environ. 42(12), 3340-3354. Doi: https://doi.org/10.1111/pce.13637
  37. Zary, K.W. and J.C. Miller Junior. 1982. Comparison of two methods of hand-crossing Vigna unguiculata (L.) Walp. HortScience 17(2), 246-248.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Artículos similares

También puede {advancedSearchLink} para este artículo.