Agronomic evaluation of Cannabis sativa (L.) cultivars in northern Colombia

Authors

DOI:

https://doi.org/10.17584/rcch.2023v17i1.15695

Keywords:

Genetic variability, Seed source, Medical cannabis, Agronomic characteristics, Biomass production, Phytocannabinoids

Abstract

Cannabis sativa (L.) is used to obtain fiber, seeds and phytocannabinoids for medicinal and recreational purposes. The commercial production of this species is limited by the lack of knowledge of the agronomic behavior and the content of phytocannabinoids, hence the need for evaluation of genetic diversity, for the selection of cultivars, in accordance with the legal provisions in force in Colombia. The objective of this work was to evaluate the agronomic characteristics and phytocannabinoid content of 10 cultivars, in Pueblo Bello-Cesar, northern Colombia. The study was conducted in 2022, under greenhouse conditions with polycarbonate cover and anti-aphid mesh. We evaluated 10 clones of territorial seed source, using cuttings of 13 cm in length, of female plants. The rooted cuttings were planted in 6 L bags, in a mesh house until harvest. The randomized complete block design was used, with 10 treatments and three repetitions. Each experimental unit consisted of 20 plants, with a density of 16 plants/m2, both in the vegetative and reproductive phases, with distances between plants and rows of 14 cm. Genetic variability was estimated in both vegetative and reproductive characteristics and phytocannabinoid content. Three groups of genotypes were identified, according to the combinations of alleles coding for the phytocannabinoid content: high THC (tetrahydrocannabinol), similar THC-CBD ratio and high CBD (cannabidiol), which determines their potential use, mainly in medicine.

JEL Classification

Array

Downloads

Download data is not yet available.

References

Ascrizzi, R., L. Ceccarini, S. Tavarini, G. Flamini, and L. Angelini. 2019. Valorisation of hemp inflorescence after seed harvest: Cultivation site and harvest time influence agronomic characteristics and essential oil yield and composition. Ind. Crops Prod. 139, 111541. Doi: https://doi.org/10.1016/j.indcrop.2019.111541

Baldini, M., C. Ferfuia, F. Zuliani, and F. Danuso. 2020. Suitability assessment of different hemp (Cannabis sativa L.) varieties to the cultivation environment. Ind. Crops Prod. 143, 111860. Doi: https://doi.org/10.1016/j.indcrop.2019.111860

Bernstein, N., J. Garelick, and S. Koch. 2019. Interplay between chemistry and morphology in medical cannabis (Cannabis sativa L.). Ind. Crops Prod. 129, 185-194. Doi: https://doi.org/10.1016/j.indcrop.2018.11.039

Bevan, L., M. Jones, and Y. Zheng. 2021. Optimisation of nitrogen, phosphorus, and potassium for soilless production of Cannabis sativa in the flowering stage using response surface analysis. Front. Plant Sci. 12, 2587. Doi: https://doi.org/10.3389/fpls.2021.764103

Busta, L., I. Dweikat, S.J. Sato, H. Qu, Y. Xue, B. Zhou, L. Gan, B. Yu, T.E. Clemente, E.B. Cahoon, and C. Zhang. 2022. Chemical and genetic variation in feral Cannabis sativa populations across the Nebraska climate gradient. Phytochemistry 200, 113206. Doi: https://doi.org/10.1016/j.phytochem.2022.113206

Campbell, L.G., S.G.U. Naraine, and J. Dusfresne. 2019. Phenotypic plasticity influences the success of clonal propagation in industrial pharmaceutical Cannabis sativa. PLoS ONE 14(3), e0213434. Doi: https://doi.org/10.1371/journal.pone.0213434

Cascini, F., A. Farcomeni, D. Migliorini, L. Baldassarri, I. Boschi, S. Martello, S. Amaducci, L. Lucini, and J. Bernardi. 2019. Highly predictive genetic markers distinguish drug-type from fiber-type Cannabis sativa L. Plants 8(11), 496. Doi: https://doi.org/10.3390/plants8110496

De Meijer, E.P.M., M. Bagatta, A. Carboni, P. Crucitti, V.M.C. Moliterni, P. Ranalli, and G. Mandolino. 2003. The inheritance of chemical phenotype in Cannabis sativa L. Genetics 163(1), 335-346. Doi: https://doi.org/10.1093/genetics/163.1.335

Dufresnes, C., C. Jan, F. Bienert, J. Goudet, and L. Fumagalli. 2017. Broad-scale genetic diversity of Cannabis for forensic applications. PLoS ONE 12(1), e0170522. Doi: https://doi.org/10.1371/journal.pone.0170522

Evren, C. and G. Umut. 2019. The good face of Cannabis sativa: Cannabidiol. Düşünen Adam. 32(4), 283-288. Doi: https://doi.org/10.14744/DAJPNS.2019.00041

Faux, A.-M., X. Draye, R. Lambert, R. d’Andrimod, P. Raulier, and P. Bertin. 2013. The relationship of stem and seed yields to flowering phenology and sex expression in monoecius hemp (Cannabis sativa L.). Eur. J. Agron. 47(1), 11-22. Doi: https://doi.org/10.1016/j.eja.2013.01.006

García-Tejero, I.F., A. Hernández, C. Ferreiro-Vera, V.H. Duran, J. Hidalgo, C. Sánchez-Carnerero, and S. Casano. 2020. Yield of new hemp varieties for medical purposes under semi-arid Mediterranean environment conditions. Comun. Sci. 11, e3264. Doi: https://doi.org/10.14295/cs.v11i0.3264

Glivar, T., J. Eržen, S. Kreft, M. Zagožen, A. Čerenak, B. Čeh, and E.T. Benković. 2020. Cannabinoid content in industrial hemp (Cannabis sativa L.) varieties grown in Slovenia. Ind. Crops Prod. 145, 112082. Doi: https://doi.org/10.1016/j.indcrop.2019.112082

Hadener, M., S. Köning, and W. Weinmann. 2019. Quantitative determination of CBD and THC and their acid precursors in confiscated cannabis samples by HPLC-DAD. Forensic Sci. Int. 299, 142-150. Doi: https://doi.org/10.1016/j.forsciint.2019.03.046

Janatová, A., A. Fraňková, P. Tlustoš, K. Hamouz, M. Božik, and P. Klouček. 2018. Yield and cannabinoids contents in different cannabis (Cannabis sativa L.) genotypes for medical use. Ind. Crops Prod. 112, 363-367. Doi: https://doi.org/10.1016/j.indcrop.2017.12.006

Kojoma, M., H. Seki, S. Yoshida, and T. Murunaka. 2006. DNA polymorphisms in the tetrahydrocannabinolic acid (THCA) synthase gene in “drug-type” and “fiber – type” Cannabis sativa L. Forensic Sci. Int. 159(2-3), 132-140. Doi: https://doi.org/10.1016/j.forsciint.2005.07.005

Marks, M.D., L. Tian, J.P. Wenger, S.N. Omburo, W. Soto-Fuentes, J. He, D.R. Gang, G.D. Weiblen, and R.A. Dixon. 2009. Identification of candidate genes affecting Δ9-tetrahydrocannabinol biosynthesis in Cannabis sativa. J. Exp. Bot. 60(13), 3715-3726. Doi: https://doi.org/10.1093/jxb/erp210

Minsalud, Colombia Ministerio de Salud y Protección Social. 2018. Decreto 631, Por el cual se modifica el artículo 2.8.11; 11.1 y se adiciona el numeral 15 al artículo 2.8.11.9.1. del Decreto 780 de 2016. In: https://www.minsalud.gov.co/Normatividad_Nuevo/Decreto%20631%20de%202018.pdf; consulted: January, 2023.

Naim-Feil, E., L.W. Pembleton, L.E. Spooner, A.L. Malthouse, A. Miner, M. Quinn, R. Polotnianka, R.M. Baillie, G.C. Spangenberg, and N.O.I. Cogan. 2021. The characterization of key physiological traits of medicinal cannabis (Cannabis sativa L.) as a tool for precision breeding. BMC Plant Biol. 21, 294. Doi: https://doi.org/10.1186/s12870-021-03079-2

Petit, J., E.M.J. Salentijn, M.-J. Paulo, C. Thouminot, B.J. van Dinter, G. Magagnini, H.-J. Gusovius, K. Tang, S. Amaducci, S. Wang, B. Uhrlaub, J. Müssing, and L.M. Trindade. 2020. Genetic variability of morphological, flowering, and biomass quality traits in hemp (Cannabis sativa L.). Front. Plant Sci. 11, 102. Doi: https://doi.org/10.3389/fpls.2020.00102

Piluzza, G., G. Delogu, A. Cabras, S. Marceddu, and S. Bullitta. 2013. Differentiation between fiber and drug types of hemp (Cannabis sativa L.) from a collection of wild and domesticated accessions. Genet. Resour. Crop Evol. 60, 2331-2342. Doi: https://doi.org/10.1007/s10722-013-0001-5

PINE, Colombia Proyecto de Interés Nacional Estratégico. 2020. Industria del cannabis medicinal. In: https://www.portafolio.co/economia/gobierno-declara-proyecto-de-interes-nacional-a-la-industria-del-cannabis-544916; consulted: January, 2023.

Poniatowska, J., K. Panasiewicz, M. Szalata, L. Zarina, S. Zute, and K. Wielgus. 2022. Variability of cannabinoid yields of fibre hemp cultivars depending on the sowing density and nitrogen fertilization. Plant Soil Environ. 68(11), 525-532. Doi: https://doi.org/10.17221/223/2022-PSE

Potter, D.J. 2014. A review of the cultivation and processing of cannabis (Cannabis sativa L.) for production of prescription medicines in the UK. Drug Test. Anal. 6(1-2), 31-38. Doi: https://doi.org/10.1002/dta.1531

Sarkar, S., J. Banerjee, and S. Gantait. 2017. Sex-oriented research on dioecious crops of Indian subcontinent: An updated review. 3 Biotech 7, 93. Doi: https://doi.org/10.1007/s13205-017-0723-8

Schumann, E., A. Peil, and W.E. Weber. 1999. Preliminary results of a German field trial with different hemp (Cannabis sativa L.) accessions. Genet. Resour. Crop Evol. 46, 399-407. Doi: https://doi.org/10.1023/A:1008696018533

Small, E. 2015. Evolution and classification of Cannabis sativa (marijuana, hemp) in relation to human utilization. Bot. Rev. 81, 189-294. Doi: https://doi.org/10.1007/s12229-015-9157-3

Small, E. 2018. Dwarf germplasm: The key to giant Cannabis hempseed and cannabinoid crops. Genet. Resour. Crop Evol. 65, 1071-1107. Doi: https://doi.org/10.1007/s10722-017-0597-y

Staginnus, C., S. Zörntlein, and E. de Meijer. 2014. A PCR marker linked to a THCA synthase polymorphism is a reliable tool to discriminate potentially THC-rich plants of Cannabis sativa L. J. Forensic Sci. 59(4), 919-926. Doi: https://doi.org/10.1111/1556-4029.12448

Trancoso, I., G.A.R. Souza, P.R. Santos, K.D. Santos, R.M.S.N. Miranda, A.L.P.M. Silva, D.Z. Santos, I.F. García-Tejero, and E. Campostrini. 2022. Cannabis sativa L.: Crop management and abiotic factors that affect phytocannabinoid production. Agronomy 12(7), 1492. Doi: https://doi.org/10.3390/agronomy12071492

Vanhove, W., P. van Damme, and N. Meert. 2011. Factors determining yield and quality of illicit indoor cannabis (Cannabis spp.) production. Forensic Sci. Int. 212 (1-3), 158-163. Doi: https://doi.org/10.1016/j.forsciint.2011.06.006

Welling, M.T., L. Liu, T. Shapter, C.A. Raymond, and G.J. King. 2016. Characterisation of cannabinoid composition in a diverse Cannabis sativa L. germplasm collection. Euphytica 208 (3), 463-475. Doi: https://doi.org/10.1007/s10681-015-1585-y

Wróbel, T., M. Dreger, K. Wielgus, and R. Słomski. 2018. The application of plant in vitro cultures in cannabinoid production. Biotechnol. Lett. 40(3), 445-454. Doi: https://doi.org/10.1007/s10529-017-2492-1

Yamamuro, T., H. Segawa, K. Kuwayama, K. Tsujikawa, T. Kanamori, and Y.T. Iwata. 2021. Rapid identification of drug-type and fiber-type cannabis by allele specific duplex PCR. Forensic Sci. Int. 318, 110634. Doi: https://doi.org/10.1016/j.forsciint.2020.110634

Cannabis plant. Photo: Herrera-Contreras, A.C.

Downloads

Published

2023-01-01

How to Cite

Araméndiz-Tatis, H., Cardona-Ayala, C., Espitia-Camacho, M., Herrera-Contreras, A., & Villalba-Soto, A. (2023). Agronomic evaluation of Cannabis sativa (L.) cultivars in northern Colombia. Revista Colombiana De Ciencias Hortícolas, 17(1), e15695. https://doi.org/10.17584/rcch.2023v17i1.15695

Issue

Section

Section on aromatic, medicinal and spice plants

Metrics

Most read articles by the same author(s)