Skip to main navigation menu Skip to main content Skip to site footer

Heritability, genetic gain, and correlations in cowpea bean (Vigna unguiculata [L.] (Walp.)

V. unguiculata, line L-019, pod formation. Photo: H. Araméndiz-Tatis

Abstract

Cowpea beans are the most important legume in the Caribbean region of Colombia. This grain is produced mainly by small farmers in rural agriculture but is becoming more important every year for commercial agriculture. The objective of this study was to estimate heritability, genetic gain and correlations between agronomic characteristics and the nutritional content of 30 cowpea bean cultivars. The number of days to flowering (NDF), number of pods per plant (NPP), number of pods per peduncle (NPPE), peduncle length (PEL), number of nodes on main stem (NNMS), grain length (GL), grain width (GW), weight of 100 seeds (W100S), iron content (FeC), zinc content (ZnC), protein content in percentage (PROT) and YIELD were evaluated. Likewise, the genetic parameters: phenotypic coefficient of variation (PCV), genotypic coefficient of variation (GCV), variability index (b), heritability [(h2 (%)], genetic gain (GG) and genetic progress (%), together with phenotypic correlations and genetic correlations, were determined. Genetic variability was evidenced in the population (P<0.05), except for PEL. The highest heritability was in W100S, ZnC and FeC (h2A> 96%). The greatest advance was achieved in ZnC, FeC, W100S and YIELD, with values higher than 30%, indicating the potential use of the evaluated genotypes for improving this species and positive and significant phenotypic and genotypic correlations between YIELD and PROT. Therefore, cultivars with higher yields and protein contents can be obtained.

Keywords

Grain legumes, Micronutrients, Genetic parameters, Genetic variability, Variability index

PDF

References

Agrawal, T., A. Kumar, S. Kumar, A. Kumar, R. Kumar, S. Kumar, and P.K. Singh. 2018. Correlation and path coefficient analysis for grain yield and yield components in chickpea (Cicer arietinum L.) under normal and late sown conditions of Bihar, India. Int. J. Curr. Microbiol. App. Sci. 7(2), 1633-1642. Doi: 10.20546/ijcmas.2018.702.197

Andrade, F.N., M. Moura Rocha, R.L. Gomes, F. Freire Filhoe, and S.R. Ramo. 2010. Estimativas de parâmetros genéticos em genótipos de feijão-caupi avaliados para feijão fresco. Rev. Ciênc. Agron. 41(2), 253-258. Doi: 10.1590/S1806-66902010000200012

Ara, A., R. Narayan, N. Ahmed, and S.H. Khan. 2009. Genetic variability and selection parameters for yield and quality attributes in tomato. Indian J. Hort. 66(1), 73-78.

Araméndiz-Tatis, H., C. Cardona-Ayala, A. Jarma, E. Combatt, J. Jaraba, T. Mercado, M. Espitia-Camacho, C. de Paula, Y. Pastrana, and J. Hernández. 2019. Manejo agronómico del fríjol caupí en el Caribe colombiano. Universidad de Córdoba, Montería, Colombia.

Contreras-Santos, J.L., J. Martínez-Atencia, J. Cadena-Torres, R.S. Novoa-Yánez, and R. Tamara-Morelos. 2020. Una evaluación de las propiedades fisicoquímicas de suelo en sistema productivo de maíz - algodón y arroz en el Valle del Sinú en Colombia. Rev. UDCA Act. Divulg. Cient. 23(2), e1375. Doi: 10.31910/rudca.v23.n2.2020.1375

Cruz, C.D. 2016. Programa Genes V.2014.6.1 - Aplicativo computacional em genética e estatística. In: http://www.ufv.br/dbg/genes/genes.htm; consulted: September, 2016.

Da Silva, D.O., C.A. Santos, S.L. Seido, W.L. Coelho, and D.A. Aquino. 2017. Retention of proteins and minerals after cooking in cowpea genotypes. Pesq. Agropec. Trop. 47(3), 353-359. Doi: 10.1590/1983-40632016v4747261

Devi, S.M. and P. Jayamani. 2018. Genetic variability, heritability, genetic advance studies in cowpea germplasm [Vigna unguiculata (L.) Walp.]. Electron. J. Plant Breed. 9(2), 476-481. Doi: 10.5958/0975-928X.2016.00050.8

Faostat. 2020. Crops. In: http://www.fao.org/statistics/es/; consulted, June, 2020.

Ferrari, M., I.C. Carvalho, A.J. Pelegrin, M. Nardino, V.J. Szareski, T. Olivoto, T. Rosa, D.N. Follmann, C. Pegoraro, L.C. Maia, and V.Q. Souza. 2018. Path analysis and phenotypic correlation among yield components of soybean using environmental stratification methods. Aust. J. Crop Sci. 12(02), 193-202. Doi: 10.21475/ajcs.18.12.02.pne488

Gerrano, A.S., P.O. Adebola, W.S. Rensburgand, and S.M. Laurie. 2015. Geneticvariability in cowpea (Vigna unguiculata (L.) Walp.) genotypes. S. Afr. J. Plan. Soil 32(3), 165-174. Doi: 10.1080/02571862.2015.1014435

Gerrano, A.S., W.S. Rensburg, S.L. Venter, N.G. Shargie, B.A. Amelework, H.A. Shimelis, and M.T. Labuschagne. 2018. Selection of cowpea genotypes based on grain mineral and total protein content. Acta Agric. Scand. B Soil Plant Sci. 69(2), 155-166. Doi: 10.1080/09064710.2018.1520290

Getachew, T., M. Firew, F. Asnake, and E. Million. 2015. Genotype x environment interaction and stability analysis for yield and yield related traits of Kabuli-type Chickpea (Cicer arietinum L.) in Ethiopia. Afr. J. Biotech. 14(18), 1564-1575. Doi: 10.5897/AJB2014.14320

Gondwe, T.M., B.O. Alamu, P. Mdziniso, and P. Maziya-Dixon. 2019. Cowpea (Vigna unguiculata (L.) Walp) for food security: an evaluation of end-user traits of improved varieties in Swaziland. Sci. Rep. 9(1), 15991. Doi: 10.1038/s41598-019-52360-w

IBPGR, International Board for Plant Genetic Resources. 1983. Cowpea descriptors. Rome.

Johnson, H.W., H.F. Robinson, and R.E. Comstock. 1955. Estimates of genetic and environmental variability in soybeans. Agron. J. 47(7), 314-318. Doi: 10.2134/agronj1955.00021962004700070009x

Keneni, G., E. Bekele, M. Imtiaz, D. Dagne, E. Getu, and F. Assefa. 2011. Genetic diversity and population structure of ethiopian chickpea (Cicer arietinum L.) germplasm accessions from different geographical origins as revealed by microsatellite markers. Plant Mol. Biol. Rep. 30(3), 654-665. Doi: 10.1007/s11105-011-0374-6

Kinhoégbè, G., G. Djèdatin, L. Loko, R. Agbo, R. Saxena, R. Varshney, R. Agbangla, and A. Dansi. 2020. Agro-morphological characterization of pigeonpea (Cajanus cajan L. Millspaugh) landraces grown in Benin: Implications for breeding and conservation. J. Plant Breed. Crop Sci. 12(1), 34-49. Doi: 10.5897/JPBCS2019.0836

Kumar, K.P., R.N. Kumar, T. Muneeswari, R. Lamror, and R. Kumari. 2013. Morphological and genetic variation studies in cowpeagenotypes [Vigna unguiculata (l.)] Walp. Legume Res. 36 (4), 351-354.

Mafakheri, K., M.R. Bihamta, and A.R. Abbasi. 2017. Assessment of genetic diversity in cowpea (Vigna unguiculata L.) germplasm using morphological and molecular characterization. Cogent Food Agric. 3(1), 1-9. Doi: 10.1080/23311932.2017.1327092

Mathos Filho, C.H., R. Ferreira Gomes, M. Moura Rocha, F. Freire Filho, and A.C. Lopes. 2009. Potencial produtivo de progênies de feijão-caupi com arquitectura ereta de planta. Ciênc. Rural 39(2), 348-354. Doi: 10.1590/S0103-84782009000200006

Meena, H.K., K. Ram Krishna, and B. Singh. 2015. Character associations between seed yield and its components traits in cowpea [Vigna unguiculata (L.) Walp.]. Indian J. Agric. Res. 49(6), 567-570. Doi: 10.18805/ijare.v49i6.6688

Mendonça, S.A., P.M. Bebe, S. Nascimento, V.B. Santos, and J.D. Marinho. 2018. Importance and correlations of characters for cowpea diversity in traditional varieties. Rev. Ciênc. Agron. 49(2), 267-274. Doi: 10.5935/1806-6690.20180030

Mofokeng, M.A., J. Mashilo, P. Rantso, and H. Shimelis. 2020. Genetic variation and genetic advance in cowpea based on yield and yield-related traits. Acta Agric. Scand. B Soil Plant Sci. 70(5), 381-391. Doi: 10.1080/09064710.2020.1749295

Moraes, C., B. Fernandes, L. Teixeira, L. Zimback, T.E. Vagne, R. Chaves, M. Moraes, and E. Mori. 2014. Estimativas dos parâmetros genéticos para seleção de árvores de eucalyptus. Sci. For. 42(104), 623-629.

Moura, J.O., M. Moura, R.L. Ferreira, F. Rodrigues-Freire, K. Damasceno, E. Silva, and V. Queiroz Ribeiro. 2012. Path analysis of iron and zinc contents and others traits in cowpea. Crop Breed. Appl. Biotechnol. 12(4), 245-252. Doi: 10.1590/S1984-70332012000400003

Nkoana, D.K., A.S. Gerrano, and E.T. Gwata. 2019. Agronomic performance and genetic variability of cowpea (Vigna unguiculata) accessions. Legum. Res. 42(6), 757-762.

Ribeiro, L.P., J.S. Pinto, M. Brandão, A. Mayrink, I. Ferreira, E. Vitorio, P.E. Teodoro, and L.L. Behering. 2019. Estimates of genetic divergence in cowpea by multivariate analysis in different environments. Biosci. J. 35(6), 1681-1687. Doi: 10.14393/BJ-v35n6a2019-42406

Robinson, H., R.E. Comstock, and V.H. Harvey. 1949. Estimates of heritability and degree of dominance in corn. Agron. J. 41(8), 353-359. Doi: 10.2134/agronj1949.00021962004100080005x

Silva, A., O.M. Morais, J.L. Santos, L.O. d’Arede, C.J. Silva, and M.M. Rocha. 2014. Estimativa de parâmetros genéticos em Vigna unguiculata. Rev. Ciênc. Agrár. 37(4), 399-407.

Silva, J.A. and J.A. Neves. 2011.Componentes de produção e suas correlações em genótipos de feijão-caupi em cultivo de sequeiro e irrigado. Rev. Ciênc. Agron. 42(3), 702-713. Doi: 10.1590/S1806-66902011000300017

Singh, R., A. Van Heusden, R. Kumar, and R. Visser. 2018. Genetic variation and correlation studies between micronutrient (Fe and Zn), protein content and yield attributing traits in mung bean (Vigna. radiata L.). Legum. Res. 41(2), 167-174. Doi: 10.18805/lr.v0i0.7843

Ubi, E.B., H. Mignouna, and G. Obigbesan. 2001. Segregation for seed weight, pod length and days to flowering following cowpea cross. Afr. Crop Sci. J. 9(1), 463-470. Doi: 10.4314/acsj.v9i3.27592

Weldemichael, G., S. Alamerew, and T. Kuf. 2017. Genetic variability, heritability, and genetic advance for quantitative traits in coffee (Coffea arabica L.) accessions in Ethiopia. Afr. J. Agric. Res. 12(21), 1824-1831. Doi: 10.5897/AJAR2016.12059

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.