Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

¿Podría la región de producción influir en la calidad y la actividad antioxidante de la manzana de marañón?

Cashews from different clones in the two regions of Ceará, Brazil. Photo: M.L.B. Almeida.

Resumen

Dada la escasez de investigaciones relacionada con la interferencia de elementos climáticos en los caracteres cualitativos de los pedúnculos de marañón, el presente trabajo tuvo como objetivo evaluar la calidad y actividad antioxidante de pedúnculos de diferentes clones de marañón enano en diferentes condiciones climáticas. El diseño experimental fue completamente al azar, en arreglo factorial con repeticiones en el tiempo, con tres clones (CCP 09, BRS 265 y PRO 555-1) en dos regiones, una ubicada en la región semiárida de Ceará, sertão (Alto Santo – CE) y en la costa (Beberibe – CE), con cuatro repeticiones y evaluados en diferentes años. En laboratorio, los frutos fueron procesados para obtener la pulpa y evaluados para: sólidos solubles (SS, °Brix), acidez titulable (AT, % ácido málico), SS/AT, azúcares solubles (AS, % glucosa), vitamina C (mg/100 g), polifenoles extraíbles totales (PET, mg 100 g-1), ácido cinámico (AC, mg L-1), transcinamoil glucósido (TG, mg L-1) y actividad antioxidante total (AAT, µmol Trolox/g). Los valores medios más altos de SS, AT, AS, vitamina C, TG, PET y AAT se observaron en los pedúnculos producidos en la sertão. ‘CCP 09’ mostró una calidad superior a los demás clones, respondiendo positivamente a las variaciones de las condiciones ambientales. La calidad y la actividad antioxidante del marañón están influenciadas por los elementos climáticos de cada región, así como por el año de producción y el genotipo. La actividad antioxidante atribuida a los pedúnculos analizados se relacionó más fuertemente con el contenido de PET y TG.

Palabras clave

Anacardium occidentale L., Poscosecha, Compuestos bioactivos, Elementos climáticos

PDF (English)

Referencias

  • Abdullah, S., R.C. Pradhana, and S. Mishra. 2021. Effect of cellulase and tannase on yield, ascorbic acid and other physicochemical properties of cashew apple juice. Fruits 76, 51-60. Doi: https://doi.org/10.17660/th2021/76.2.1
  • Adisakwattana, S., W. Sompong, A. Meeprom, S. Ngamukote, and S. Yibchok-Anun. 2012. Cinnamic acid and its derivatives inhibit fructose-mediated protein glycation. Int. J. Mol. Sci. 13(2), 1778-1789. Doi: https://doi.org/10.3390/ijms13021778
  • Almeida, M.L.B., W.E.S. Freitas, P.L.D. Morais, J.D.A. Sarmento, and R.E. Alves. 2016. Bioactive compounds and antioxidant potential fruit of Ximenia americana L. Food Chem. 192, 1078-1082. Doi: https://doi.org/10.1016/j.foodchem.2015.07.129
  • Almeida, M.L.B., C.F.H. Moura, R. Innecco, and M.R.S. Silveira. 2018. Physical characteristics of cashew apples from dwarf cashew (Anacardium occidentale L.) clones as a function of environmental and temporal variation. Rev. Colomb. Cienc. Hortic. 12, 41-49. Doi: https://doi.org/10.17584/rcch.2018v12i1.7509
  • AOAC, Association of Official Analytical Chemists. 2005. Official methods of analysis of the association of official analytical chemists. 18th ed. Washington, DC.
  • Beckles, D.M. 2012. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 63, 129-140. Doi: https://doi.org/10.1016/j.postharvbio.2011.05.016
  • Brito, E.S., M.C.P. Araújo, L. Lin, and J. Haenly. 2007. Determination of the flavonoid componentes of cashew apple (Anacardium occidentale) by LC-DAD-EIS/MS. Food Chem. 105, 1112-1118. Doi: https://doi.org/10.1016/j.foodchem.2007.02.009
  • Das, I. and A. Arora. 2017. Post-harvest processing technology for cashew apple – A review. J. Food Eng. 194, 87-98. Doi: https://doi.org/10.1016/j.jfoodeng.2016.09.011
  • Emelike, N.J.T. and P.C. Obinna-Echem. 2020. Effect of pasteurization and storage temperatures on the physicochemical properties and microbiological quality of cashew apple juice. Am. J. Food Sci. Technol. 8, 63-69. Doi: https://doi.org/10.12691/ajfst-8-2-4
  • Figueirêdo, M.C.B., J. Potting, L.A.L. Serrano, M.A. Bezerra, V.S. Barros, R.S. Gondim, and T. Nemecek. 2016. Environmental assessment of tropical perennial crops: the case of the Brazilian cashew. J. Cleaner Prod. 112, 131-140. Doi: https://doi.org/10.1016/j.jclepro.2015.05.134
  • Funceme. 2015. Calendário das chuvas no estado do Ceará. In: http://www.funceme.br/index.php/areas/tempo/calendariodaschuvas; consulted: January, 2015.
  • Gao, H., Z.K. Zhang, H.K. Chai, N. Cheng, Y. Yang, D.N. Wang, T. Yang, and W. Cao. 2016. Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biol. Technol. 118, 103-110. Doi: https://doi.org/10.1016/j.postharvbio.2016.03.006
  • Gordon, A., M. Friedrich, V.M. Matta, C.F.H. Moura, and F. Marx. 2012. Changes in phenolic composition, ascorbic acid and antioxidante capacity in cashew apple (Anacardium occidentale L.) during ripening. Fruits 67, 267-276. Doi: https://doi.org/10.1051/fruits/2012023
  • Hu, Y., C.-M. Chen, L. Xu, Y. Cui, X.-Y. Yu, H.-J. Gao, Q. Wang, K. Liu, Y. Shi, and Q.-X. Chen. 2015. Postharvest application of 4-methoxy cinnamic acid for extending the shelf life of mushroom (Agaricus bisporus). Postharvest Biol. Technol. 104, 33-41. Doi: https://doi.org/10.1016/j.postharvbio.2015.03.007
  • Lado, J., M.J. Rodrigo, and L. Zacarías. 2014. Maturity indicators and citrus fruit quality. Stewart Postharvest Rev. 2, 2.
  • Larrauri, J.A., P. Rupérez, and F. Saura-Calixo. 1997. Effect of drying temperature on the stabilitity of polyphenols and antioxidant activity of red grape pomace peels. J. Agric. Food Chem. 45, 1390-1393. Doi: https://doi.org/10.1021/jf960282f
  • Lopes, M.M.A., M.R.A. Miranda, C.F.H. Moura, and J. Enéas Filho. 2012. Bioactive compounds and total antioxidant capacity of cashew apples (Anacardium occidentale L.) during the ripening of early dwarf cashew clones. Cienc. Agrotecnol. 36, 325-332. Doi: https://doi.org/10.1590/S1413-70542012000300008
  • Luengo-Fereira, A.J. and J.D. Hernández-Varela. 2021. Relationship between color and physico-chemical properties of cashew apple (Anacardium occidentale L.) at different days of storage. Rev. Fac. Nac. Agron. Medellin 74, 9593-9602. Doi: https://doi.org/10.15446/rfnam.v74n2.90073
  • Machado, M., C. Felizardo, A.A.F. Silva, F.M. Nunes, and A. Barros. 2013. Polyphenolic compounds, antioxidante activity and L-phenylalanine ammonia-lyase activity during ripening of olive cv. “Cobrançosa” under different irrigation regimes. Food Res. Int. 51, 412-421. Doi: https://doi.org/10.1016/j.foodres.2012.12.056
  • Maro, L.A.C., R. Pio, M.N.S. Guedes, C.M.P. Abreu, and P.H.A. Moura. 2014. Environmental and genetic variation in the post-harvest quality of raspberries in subtropical areas in Brazil. Acta Sci. Agron. 36, 323-328. Doi: https://doi.org/10.4025/actasciagron.v36i3.18050
  • Mikulic-Petkovsek, M., V. Schmitzer, A. Slatnar, F. Stampar, and R.A. Veberic. 2015. A comparison of fruit quality parameters of wild bilberry (Vaccinium myrtillus L.) growing at different locations. J. Sci. Food Agric. 95, 776-785. Doi: https://doi.org/10.1002/jsfa.6897
  • Ndiaye, L., M.M. Charahabil, L. Niang, A. Diouf, K.M.O. Thiocone, N.C. Ayessou, and M. Diatta. 2022. Physicochemical, biochemical and antioxidant potential characterisation of cashew apple (Anacardium occidentale L.) from the agro-ecological zone of Casamance (Senegal). Food Nutr. Sci. 13, 439-452. Doi: https://doi.org/10.4236/fns.2022.134032
  • Obanda, M., P.O. Owuor, and S.J. Taylor. 1997. Flavonol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas. J. Sci. Food Agric. 74, 209-215. Doi: https://doi.org/10.1002/(SICI)1097-0010(199706)74:2<209::AID-JSFA789>3.0.CO;2-4
  • Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231-1237. Doi: https//doi.org/10.1016/s0891-5849(98)00315-3
  • Ribeiro, P.F.A., P.C. Stringheta, E.B. Oliveira, A.C. Mendonça, and H.M.P. Sant’Ana. 2016. Teor de vitamina C, β-caroteno e minerais em camu-camu cultivado em diferentes ambientes. Cienc. Rural 46, 567-572. Doi: https://doi.org/10.1590/0103-8478cr20150024
  • Senica, M., M. Bavec, F. Stampar, and M. Mikulic-Petkovsek. 2018. Blue honeysuckle (Lonicera caerulea subsp. edulis (Turcz. ex-Herder) Hultén.) berries and changes in their ingredients across different locations. J. Sci. Food Agric. 98, 3333-3342. Doi: https//doi.org/10.1002/jsfa.8837
  • Silva, J.E.B., J. Dantas Neto, J.P Gomes, J.L. Maciel, M.M. Silva, and R.D. Lacerda. 2008. Avaliação do ºBrix e pH de frutos da goiabeira em função de lâminas de água e adubação nitrogenada. Rev. Bras. Prod. Agroind. 10, 43-52. Doi: https://doi.org/10.15871/1517-8595/rbpa.v10n1p43-52
  • Souza, K.O., A.G. Silveira, M.M.A. Lopes, C.F.H. Moura, E.O. Silva, J.F. Ayala-Zavala, L.S.P. Soares, and M.R.A. Miranda. 2019. AVG and GA3 prevent preharvest fruit drop and enhance postharvest quality of ‘BRS 189’ cashew. Sci. Hortic. 257, 1-8. Doi: https://doi.org/10.1016/j.scienta.2019.108771
  • Souza, K.O., R.M. Viana, L.S. Oliveira, C.F.H. Moura, and M.R.A. Miranda. 2016. Preharvest treatment of growth regulators influences postharvest quality and storage life of cashew apples. Sci. Hortic. 209, 53-60. Doi: https://doi.org/10.1016/j.scienta.2016.06.006
  • Souza, K.O., C.V. Xavier, M.M.A. Lopes, C.F.H. Moura, E.O. Silva, J.F. Ayala-Zavala, L.S.P. Soares, and M.R.A. Miranda. 2018. Preharvest treatment with 1-aminoethoxyvinylglycine and gibberellin on the quality and physiology of cashew peduncles. Pesq. Agropec. Bras. 53, 684-692. Doi: https://doi.org/10.1590/S0100-204X2018000600004
  • Strohecker, R. and H.M. Henning. 1967. Análisis de vitaminas: métodos comprobados. Paz Montalvo, Madrid.
  • Szeleszczuk, L., D.M. Pisklak, M. Zielinska-Pisklak, and I. Wawer. 2016. Effects of structural differences on the NMR chemical shifts in cinnamic acid derivatives: Comparison of GIAO and GIPAW calculations. Chem. Phys. Lett. 653, 35-41. Doi: https://doi.org/10.1016/j.cplett.2016.04.075
  • Yemn, E.W. and A.J. Willis. 1954. The estimation of carbohydrate in plant extracts by anthrone. Biochem. J. 57, 508-514. Doi: https://doi.org/10.1042/bj0570508

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a