Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Síntomas y componentes de crecimiento en plantas de feijoa (Acca sellowiana [O. Berg] Burret) en respuesta a deficiencias de calcio, magnesio y boro

Resumen

Los síntomas de deficiencia de nutrientes se utilizan ampliamente para determinar las demandas de nutrientes de un cultivo y aclarar los desórdenes nutricionales, en particular cuando son específicos de un determinado elemento nutritivo. Hasta el momento no se ha realizado un experimento de deficiencias de calcio (Ca), magnesio (Mg) y boro (B) en feijoa y descritos síntomas diagnosticados. Por esta razón, se estudiaron plantas de feijoa ‘Quimba’ de 9 meses de edad utilizando el método del nutriente faltante. Se aplicó una solución modificada de Hoagland y Arnon, suprimiendo un elemento en cada tratamiento. Los tratamientos fueron: (1) fertilización completa (testigo); (2) fertilización completa -Ca; (3) fertilización completa -Mg; (4) fertilización completa -B; (5) sin fertilización (control negativo). Se describieron los síntomas de deficiencia diagnosticados en las plantas y se hicieron registros fotográficos. La deficiencia de Ca se notó temprano en los ápices de los brotes y luego en las hojas jóvenes completamente expandidas. La falta de Mg se presentó en hojas más viejas y completamente expandidas principalmente como clorosis intervenal, mientras que la deficiencia de B generó una variedad de síntomas, clorosis intervenal y total en hojas completamente y no completamente expandidas, y un mosaico de síntomas en hojas adultas. Con respecto a los componentes de crecimiento, la deficiencia de Mg redujo el número de brotes apicales, mientras que las plantas deficientes de Ca y Mg redujeron significativamente la tasa de crecimiento de las plántulas. Para experimentos futuros, los autores sugieren un período experimental más largo que 102 d para lograr resultados más concluyentes.

Palabras clave

Deficiencia de nutrientes, Sintomatología, Malformaciones, Clorosis, Necrosis, Clorofila

PDF (English)

Referencias

  • Adams, D.O. and S.F. Yang. 1981. Ethylene the gaseous plant hormone: mechanism and regulation of biosynthesis. Trends Biochem. Sci. 6, 161-164. Doi: https://doi.org/10.1016/0968-0004(81)90059-1
  • Agronet. 2023. Reporte: área, producción y rendimiento nacional por cultivo – feijoa. In: https://www.agronet.gov.co/estadistica/paginas/home.aspx?cod=1; consulted: March, 2023.
  • Allnér, O., L. Nilsson, and A. Villa. 2012. Magnesium ion–water coordination and exchange in biomolecular simulations. J. Chem. Theory Comput. 8(4), 1493-1502. Doi: https://doi.org/10.1021/ct3000734
  • Barnard, R., G. Cillié, and J. Kotzé. 1991. Deficiency symptoms in avocados. South Afr. Avocado Growers’ Ass. Yearb. 14, 67-71.
  • Bautista-Montealegre, L.G., M.M. Bolaños-Benavides, J.H. Argüelles-Cárdenas, and G. Fischer. 2019. Fertilización con nitrógeno, fósforo, potasio y calcio en mora (Rubus glaucus Benth.): Efecto sobre Antracnosis bajo condiciones controladas. Acta Agron. 68(3), 228-236. Doi: https://doi.org/10.15446/acag.v68n3.68337
  • Bautista-Montealegre, L.G., L.Y Deantonio-Florido, W.A. Cardona, M.M. Bolaños-Benavides, and G. Fischer. 2022. Mineral nutrition and tolerance to Colletotrichum spp. of Andean blackberry (Rubus glaucus Benth.) in nursery. Agron. Mesoam. 33(3), 48655. Doi: https://doi.org/10.15517/am.v33i3.48655
  • Brett, C.T. and K.W. Waldron. 1996. Physiology and biochemistry of plant cell walls. Vol. 2. Springer Science & Business Media.
  • Brown, P.H., N.A. Bellaloui, M.A. Wimmer, E.S. Bassil, J. Ruiz, H. Hu, H. Pfeffer, F. Dannel, and V. Römheld. 2002. Boron in plant biology. Plant Biol. 4(02), 205-223. Doi: https://doi.org/10.1055/s-2002-25740
  • Buitrago, S., M. Leandro, and G. Fischer. 2021. Symptoms and growth components of feijoa (Acca sellowiana [O. Berg] Burret) plants in response to the missing elements N, P, and K. Rev. Colomb. Cienc. Hortic. 15(3), e13159. Doi: https://doi.org/10.17584/rcch.2021v15i3.13159
  • Cakmak, I., P. Brown, J.M. Colmenero-Flores, S. Husted, B.Y. Kutman, M. Nikolic, Z. Rengel, S.B. Schmidt, and F.-J. Zhao. 2023. Micronutrients. In: Rengel, Z., I. Cakmak, and P. White (eds.). Marschner’s mineral nutrition of plants. 4th ed. Elsevier. Doi: https://doi.org/10.1016/B978-0-12-819773-8.00017-4
  • Cakmak, I. and A.M. Yazici. 2010. Magnesium: A forgotten element in crop production. Better Crops 94(2), 23-25.
  • Castaño, C.A., C.S. Morales, and F.H. Obando. 2008. Evaluación de las deficiencias nutricionales en el cultivo de la mora (Rubus glaucus) en condiciones controladas para bosque montano bajo. Agronomía 16(1), 75-88.
  • Cockson, P., H. Landis, T. Smith, K. Hicks, and B. Whipker. 2019. Characterization of nutrient disorders of Cannabis sativa. Appl. Sci. 9(20). Doi: https://doi.org/10.3390/app9204432
  • de Bang, T.C., S. Husted, K.H. Laursen, D.P. Persson, and J.K. Schjoerring. 2021. The molecular–physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol. 229(5), 2446-2469. Doi: https://doi.org/10.1111/nph.17074
  • Donazzolo, J., E.L.C. Turra, L.C. Voss, M.A. Danner, I. Citadin, and R.O. Nodari. 2019. Reproductive biology and flowering of feijoa (Acca sellowiana (Berg) Burret) in areas of marginal occurrence. J. Agric. Sci. 11(8). Doi: https://doi.org/10.5539/jas.v11n8p156
  • Dussán, S.L., D.A. Villegas, and D. Miranda. 2016. Efecto de la deficiencia de N, P, K, Mg, Ca y B sobre la acumulación y distribución de la masa seca en plantas de guayaba (Psidium guajava L.) var. ICA Palmira II en fase de vivero. Rev. Colomb. Cienc. Hortic. 10(1), 40-52. Doi: https://doi.org/10.17584/rcch.2016v10i1.4277
  • Dwivedi, P. and R.S. Dwivedi. 2012. Physiology of abiotic stress in plants. Agrobios, Jodhpur, India.
  • Eisa, M., D. Ragauskaitė, S. Adhikari, F. Bella, and J. Baltrusaitis. 2022. Role and responsibility of sustainable chemistry and engineering in providing safe and sufficient nitrogen fertilizer supply at turbulent times. ACS Sustain. Chem. Eng. 10(28), 8997-9001. Doi: https://doi.org/10.1021/acssuschemeng.2c03972
  • Fischer, G. and L.M. Melgarejo. 2021. Ecophysiological aspects of guava (Psidium guajava L.). A review. Rev. Colomb. Cienc. Hortic. 15(2), e12355. Doi: https://doi.org/10.17584/rcch.2021v15i2.12355
  • Fischer, G., L.M. Melgarejo, and H.E. Balaguera-López. 2022a. Review on the impact of elevated CO2 concentrations on fruit species in the face of climate change. Cienc. Tecnol. Agropecu. 23(2), e2475. Doi: https://doi.org/10.21930/rcta.vol23_num2_art:2475
  • Fischer, G., D. Miranda, G. Cayón, and M. Mazorra (eds.). 2003. Cultivo, poscosecha y exportación de la feijoa (Acca sellowiana Berg). Produmedios, Bogota.
  • Fischer, G., J.O. Orduz-Rodríguez, and C.V.T. do Amarante. 2022b. Sunburn disorder in tropical and subtropical fruits. A review. Rev. Colomb. Cienc. Hortíc. 16(3), e15703. Doi: https://doi.org/10.17584/rcch.2022v16i3.15703
  • Fischer, G. and A. Parra-Coronado. 2020. Influence of some environmental factors on the feijoa (Acca sellowiana [Berg] Burret): A review. Agron. Colomb. 38(3), 388-397. Doi: https://doi.org/10.15446/agron.colomb.v38n3.88982
  • Fischer, G., A. Parra-Coronado, and H.E. Balaguera-López. 2022c. Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agron. Colomb. 40(2), 212-227. Doi. https://doi.org/10.15446/agron.colomb.v40n2.101854
  • Fischer, G., A. Parra-Coronado, and H.E. Balaguera-López. 2020. Aspectos del cultivo y la fisiología de la feijoa (Acca sellowiana [Berg] Burret). Una revisión. Cien. Agri. 17(3), 11-24. Doi: https://doi.org/10.19053/01228420.v17.n3.2020.11386
  • Fromm, J. 2010. Wood formation of trees in relation to potassium and calcium nutrition. Tree Physiol. 30(9), 1140-1147. Doi: https://doi.org/10.1093/treephys/tpq024
  • Geiger, D., S. Scherzer, P. Mumm, and R. Hedrich. 2010. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc. Nat. Acad. Sci. 107(17), 8023-8028. Doi: https://doi.org/10.1073/pnas.0912030107
  • Gil, G.F. 2006. La producción de fruta. 2nd ed. Ediciones Universidad Católica de Chile, Santiago.
  • Gómez, M.I. 2012. Fertilización de frutales. pp. 141-168. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  • Han, S., L.-S. Chen, H.-X. Jiangb, B.R. Smith, L.-T. Yang, and C.-Y. Xie. 2008. Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus cuttings. J. Plant Physiol. 165, 1331-1341. Doi: https://doi.org/10.1016/j.jplph.2007.11.002
  • Hänsch, R. and R.R. Mendel. 2009. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 12, 259-266. Doi: https://doi.org/10.1016/j.pbi.2009.05.006
  • Hirschi, K.D. 2004. The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol. 136(1), 2438-2442. Doi: https://doi.org/10.1104/pp.104.046490
  • Hunt, R. 1990. Basic growth analysis: Plant growth analysis for beginners. Springer, Dordrecht, The Netherlands. Doi: https://doi.org/10.1007/978-94-010-9117-6
  • Hurtado, S., H.N. Díaz, G. Fischer, D. Miranda, and L.M. Melgarejo. 2019. Sintomatología de deficiencias de algunos nutrientes minerales en plantas de aguacate (Persea americana Mill. cv. Hass) en estado vegetativo. pp. 119-132. In: Melgarejo, L.M. (ed.). Gulupa (Passiflora edulis), curuba (Passiflora tripartita), aguacate (Persea americana) y tomate de árbol (Solanum betaceum) innovaciones. Universidad Nacional de Colombia, Bogota. Doi: https://doi.org/10.36385/FCBOG-1-07
  • Knight, H. 2000. Calcium signaling during abiotic stress in plants. Int. Rev. Cytol. 195, 269-324. Doi: https://doi.org/10.1016/s0074-7696(08)62707-2
  • Kochhar, S.L. and S.K. Gujral. 2020. Plant physiology - Theory and applications. 2nd ed. Cambridge University Press, Cambridge, UK. Doi: https://doi.org/10.1017/9781108486392
  • Kumari, B., S. Prakash, and U.S. Jaiswal. 2018. Production potential of guava as influenced by nitrogen and boron levels as well as macro and micro nutrient content in leaf. Int. J. Curr. Microbiol. Appl. Sci. 7(4), 1780-1789. Doi: https://doi.org/10.20546/ijcmas.2018.704.202
  • La Verde, V., P. Dominici, and A. Astegno. 2018. Towards understanding plant calcium signaling through calmodulin-like proteins: A biochemical and structural perspective. Int. J. Mol. Sci. 19(5), 1331. Doi: https://doi.org/10.3390/ijms19051331
  • Lambers, H. and R. Oliveira. 2019. Plant physiological ecology. 3rd ed. Springer, Cham, Switzerland. Doi: https://doi.org/10.1007/978-3-030-29639-1
  • Liu, M., X. Liu, X.L. He, L.J. Liu, H. Wu, C.X. Tang, Y.S. Zhang, and C.W. Jin. 2017. Ethylene and nitric oxide interact to regulate the magnesium deficiency‐induced root hair development in Arabidopsis. New Phytol. 213(3), 1242-1256. Doi: https://doi.org/10.1111/nph.14259
  • Maathuis, F.J.M. 2009. Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 12, 250-258. Doi: https://doi.org/10.1016/j.pbi.2009.04.003
  • Marry, M., K. Roberts, S.J. Jopson, I.M. Huxham, M.C. Jarvis, J. Corsar, E. Robertson, and M.C. McCann. 2006. Cell–cell adhesion in fresh sugar-beet root parenchyma requires both pectin esters and calcium cross-links. Physiol. Plant. 126, 243-256. Doi: https://doi.org/10.1111/j.1399-3054.2006.00591.x
  • Marschner, P. (ed.). 2012. Marschner’s mineral nutrition of higher plants. 3rd ed. Academic Press, London.
  • Martínez, F.E., J. Sarmiento, G. Fischer, and F. Jiménez. 2009. Síntomas de deficiencia de macronutrientes y boro en plantas de uchuva (Physalis peruviana L.). Agron. Colomb. 27(2), 169-178.
  • Moreno-Echeverry, D.L., I.A. Quiroga, H.E. Balaguera-López, and S. Magnitskiy. 2016. El estrés por boro afecta la fotosíntesis y la síntesis de compuestos antioxidantes en plantas. Una revisión. Rev. Colomb. Cienc. Hortic. 10(1), 137-148. Doi: https://doi.org/10.17584/rcch.2016v10i1.4189
  • Natale, W., R. Mello-Prado, J.A. Quaggio, and D. Mattos-Junior. 2009. Guava. In: Araujo, L. and A. Naumov (eds.). Fruteiras tropicais do Brasil. International Potash Institute, Bern, Switzerland
  • Pallardy, S.G. 2010. Physiology of woody plants. 3rd ed. Academic Press, San Diego, CA.
  • Parra-Coronado, A. and G. Fischer. 2013. Maduración y comportamiento poscosecha de la feijoa (Acca sellowiana (O. Berg) Burret). Una revisión. Rev. Colomb. Cienc. Hortic. 7(1), 98-110. Doi: https://doi.org/10.17584/rcch.2013v7i1.2039
  • Parra-Coronado, A., G. Fischer, H.E. Balaguera-López, and L.M. Melgarejo. 2022. Sugar and organic acids content during fruit development in feijoa (Acca sellowiana [O. Berg] Burret) grown in two altitudinal zones. Rev. Cienc. Agric. 39(1), 55-69. Doi: https://doi.org/10.22267/rcia.223901.173
  • Prabhakar, N., P.R. Suresh, N. Sainath, and P.R. Nithya. 2016. Relevance of calcium nutrition in present day agriculture. Adv. Life Sci. 5(7), 2526-2530.
  • Prado, R.M., G. Caione, and D.J. Silva. 2012. Macronutrients and micronutrients deficiency symptoms in mango. pp. 470-478. In: Valavi, S.G. (ed.). Mango cultivation in different countries. Studium Press LLC, Jodhpur, India.
  • Rajendran, C., K. Ramamoorthy, and S.J. Hepziba. 2009. Nutritional and physiological disorders in crop plants. Scientific Publ. Jodhpur, India.
  • Robertson, G. and B. Loughman. 1973. Rubidium uptake and boron deficiency in Vicia faba L. J. Exp. Bot. 24(6), 1046-1052. Doi: https://doi.org/10.1093/jxb/24.6.1046
  • Roveda-Hoyos, G., J.F. Venegas-Gómez, L.P. Moreno-Fonseca, S. Magnitskiy, and M. Ramírez-Gómez. 2022. Effect of inoculation with Acaulospora and Glomus on the growth and nutrition of blueberries (Vaccinium corymbosum) with different fertilization levels. Rev. Colomb. Cienc. Hortic. 16(2), e13561. Doi: https://doi.org/10.17584/rcch.2022v16i2.13561
  • Sachet, M.R., I. Citadin, M.T. Guerrezi, R.H. Pertille. J. Donazzolo, and R.O. Nodari. 2019. Non-destructive measurement of leaf area and leaf pigments in feijoa trees. Rev. Bras. Eng. Agric. Amb. 23(1), 16-20. Doi: https://doi.org/10.1590/1807-1929/agriambi.v23n1p16-20
  • Schmidt, S.B. and S. Husted. 2019. The biochemical properties of manganese in plants. Plants 8(10), 381. Doi: https://doi.org/10.3390/plants8100381
  • Shireen, F., M.A. Nawaz, C. Chen, Q. Zhang, Z. Zheng, H. Sohail, J. Sun, H. Cao, Y. Huang, and Z. Bie. 2018. Boron: Functions and approaches to enhance its availability in plants for sustainable agriculture. Int. J. Mol. Sci. 19(7), 1856. Doi: https://doi.org/10.3390/ijms19071856
  • Silva, E.B., A.A. Santos, A.M. Mattos, A.M.B. Neto, M.C.M. Cruz, R.A. Moreira, V.C. Andrade Junior, E.D. Gonçalves, and L.F. Oliveira. 2017. Visual symptoms of nutrient deficiencies in Physalis peruviana L. Biosci. J. 33(1), 105-112. Doi: https://doi.org/10.14393/BJ-v33n1a2017-32746
  • Silva-Cardoso, I.M.A., M.W.R. Souza, K. Almeida, J.F. Gonçalves, R. Veloso, A. Marques, and M. Laia. 2014. Nutritional deficiency symptoms in hybrid clones of Eucalyptus under omission of macronutrients, B and Zn. Aust. J. Basic Appl. Sci. 8(15), 85-89.
  • Taiz, L., E. Zeiger, I.M. Møller, and A. Murphy. 2017. Fisiologia e desenvolvimento vegetal. 6th ed. Artmed, Porto Alegre, Brazil.
  • Tanoi, K. and N.I. Kobayashi. 2015. Leaf senescence by magnesium deficiency. Plants 4(4), 756-772. Doi: https://doi.org/10.3390/plants4040756
  • Tortora, F., R. Notariale, V. Maresca, K.V. Good, S., Sorbo A. Basile, M. Piscopo, and C. Manna. 2019. Phenol-rich Feijoa sellowiana (Pineapple guava) extracts protect human red blood cells from mercury-induced cellular toxicity. Antioxidants 8(7), 220. Doi: https://doi.org/10.3390/antiox8070220
  • Tränkner, M., E. Tavakol, and B. Jákli. 2018. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant. 163(3), 414-431. Doi: https://doi.org/10.1111/ppl.12747
  • Van Maarschalkerweerd, M. and S. Husted. 2015. Recent developments in fast spectroscopy for plant mineral analysis. Front. Plant Sci. 6(35), 169. Doi: https://doi.org/10.3389/fpls.2015.00169
  • White, P.J., M.R. Broadley, H.A. El-Serehy, T.S. George, and K. Neugebauer. 2018. Linear relationships between shoot magnesium and calcium concentrations among angiosperm species are associated with cell wall chemistry. Ann. Bot. 122(2), 221-226. Doi: https://doi.org/10.1093/aob/mcy062
  • Wimmer, M.A., I. Abreu, R.W. Bell, M.D. Bienert, P.H. Brown, B. Dell, T. Fujiwara, H.E. Goldbach, T. Lehto, and H.P. Mock. 2019. Boron: an essential element for vascular plants. New Phytol. 226(5), 1232-1237. Doi: https://doi.org/10.1111/nph.16127
  • Zekri, M. and T. Obreza. 2013. Potassium (K) for citrus trees. Document SL381. UF/IFAS Extension, Gainesville, FL. Doi: https://doi.org/10.32473/edis-ss583-2013
  • Zhu, F. 2018. Chemical and biological properties of feijoa (Acca sellowiana). Trends Food Sci. Technol. 81, 121-131. Doi: https://doi.org/10.1016/j.tifs.2018.09.008

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

1 2 3 4 5 6 > >>