Ecoladrillos: An alternative for the Use of Recycled Clay and Rubber Grain
Abstract
The excessive population growth accompanied by the variety of economic activities that humanity carries out to obtain sustenance are triggering an increase in the consumption of natural resources and in the production of waste, with the consequent environmental impact. This reality has motivated looking for alternatives to incorporate certain waste into the production chain in order to reduce overconsumption of raw materials in certain construction materials. For this reason, for example, there are options to use raw material recovered from tires in asphalt mixes, mortar, and concrete, among others. This study demonstrates the technical, environmental and economic viability of eco-bricks of soil-cement and soil-cement-grain plastic GCR. Masonry was made of 70% previously sieved clay with 20% cement and 10% sand, adding the necessary water for workability. Also, clay-cement and recycled rubber (GCR) specimens were prepared using 7% of rubber that was the addition that favored the mechanical behavior of the prepared brick. The general analysis of the technical, environmental and economic results obtained allows us to affirm that these eco-bricks contribute to the disposal of waste.
JEL Codes: R31
Received: 03/03/2023. Accepted: 01/05/2023. Published: 14/06/2023.
Keywords
eco-brick, rubber grain, insolation, environment, new materials
Author Biography
Juan Sebastián Gambin-Martínez
Tatiana Isabel Bautista-Zapata
Luz Marina Torrado-Gómez
María Fernanda Serrano Guzmán
Diego Darío Pérez Ruiz
References
- Abdel-Shafy, H., y Mansour, M. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum, 7(4), 1275-1290. https://doi.org/10.1016/j.ejpe.2018.07.003
- Adhikari, B., y Maiti, D. (2000). Reclamation and recycling of waste rubber. Progress in Polymer Sciences, 25(7), 909-948. https://doi.org/10.1016/S0079-6700(00)00020-4
- Albidah, A., Alsaif, A., Abadel, A., Abbas, H., y Al-Salloum, Y. (2022). Role of recycled vehicle tires quantity and size on the properties of metakaolin-based geopolymer rubberized concrete. Journal of materials, research and technology, (18), 2593-2607. https://doi.org/10.1016/j.jmrt.2022.03.103
- Amiandamhen, S., Adamopoulos, S., Adl-Zarrabi, B., Haiyan, Y., y Norén, J. (2021). Recycling sawmilling wood chips, biomass combustion residues, and tyre fibres into cement-bonded composites: Properties of composites and life cycle analysis. Construction and Building Materials, (297), e123781. https://doi.org/10.1016/j.conbuildmat.2021.123781
- Arulrajah, A., Narsilio, G., Kodikara, J., y Orense, R. (2015). Key Issues in Environmental Geotechnics: Australia-New Zealand. Journal of Environmental Geotechnics, 2(6), 326-330. http://dx.doi.org/10.1680/envgeo.14.00005
- Asaro, L., Gratton, M., Seghar, S., y Aït Hocine, N. (2018). Recycling of rubber wastes by vulcanization. Resources, Conservation and Recycling, (133), 250-262. https://doi.org/10.1016/j.resconrec.2018.02.016
- Asgharzadeh, S., Sadeghi, J., Peivast, P., y Pedram, M. (2018). Fatigue properties of crumb rubber asphalt mixtures used in railways. Construction and Building Materials, (184), 248-257. https://doi.org/10.1016/j.conbuildmat.2018.06.189
- Auerbach, P., y Lemery, J. (2017). Enviromedics: The Impact of Climate Change on Human Health. Rowman & Littlefield.
- Bakshi, B., Fiksel, J., Baral, A., Guerra, E., y Dequervain, B. (2011). Comparative life cycle assessment of beneficial applications for scrap tires. Clean Technology and Environmental Policy, 13(1), 19-35. https://doi.org/10.1007/s10098-010-0289-1
- Batayneh, M., Marie, I., y Asi, I. (2008). Promoting the use of crumb rubber concrete in developing countries. Waste Management, (28), 2171-2176. https://doi.org/10.1016/j.wasman.2007.09.035
- Bautista-Zapata, T., y Gambin-Martínez, J. (2017). Análisis del comportamiento físico y mecánico de ladrillos de arcilla modificados con caucho reciclado. [Trabajo de grado, Universidad Pontificia Bolivariana, Bucaramanga]. https://biblioteca.bucaramanga.upb.edu.co/application/index/material/34540
- Benallal, B., Roy, C., Pakdel, H., Chabot, S., y Poirier, M. (1995). Characterization of pyrolytic light naphtha from vacuum pyrolysis of used tyres comparison with petroleum naphtha. Fuel, 74(11), 1589-1594. https://doi.org/10.1016/0016-2361(95)00165-2
- Cámara de Comercio de Bogotá. (2006). Guía para el manejo de llantas usadas. Un sector transporte con operación más limpia. Editorial Kimpres.
- Carrillo, J., y Díaz, C. (2020). Mechanical Properties of Concrete Slabs Reinforced with Recycled Steel Fibers from Post-Consumer Tires in Bogotá, Colombia. Ciencia e Ingeniería Neogranadina, 30(2), 67-79. https://doi.org/10.18359/rcin.4412
- Chen, Z., Wang, T., Pei, J., Amirkhanian, S., Xiao, F., Ye, Q., y Fan, Z. (2019). Low temperature and fatigue characteristics of treated crumb rubber modified asphalt after a long term aging procedure. Journal of Cleaner Production, (234), 1262-1274. https://doi.org/10.1016/j.jclepro.2019.06.147
- Crespo Villalaz, C. (2004). Mecánica de suelos y cimentaciones. (5ta ed.). Limusa.
- de La Cruz Velasco, L., Chamorro-Mejía, J., y Córdoba-Cely, C. (2021). Characterization Physico-chemical and mechanical of 4 vegetable fibers used as artisanal raw materials in the Department of Nariño. DYNA, 88(216), 96-102. https://doi.org/10.15446/dyna.v88n216.87958
- Delgado-Jojoa, M., Sánchez-Gilede, J., Rondón-Quintana, H., Fernández-Gómez, W., y Reyes-Lizcano, F. (2018). Influence of four non-conventional additives on the physical, rheological and thermal properties of an asphalt. Ingeniería e Investigación, 38(2), 18-26. https://doi.org/10.15446/ing.investig.v38n2.68638
- Eco Máquinas. (2020). Manual Eco-Brava. https://www.ecomaquinas.com.br/maquina/eco-brava-semi-manual/
- Ellen MacArthur Foundation. (2013). Towards the Circular Economy. Economic and business rationale for an accelerated transition. https://tinyurl.com/mub298us
- Ferronato, N., Rada, E., Gorritty Portillo, M., Cioca, L., Ragazzi, M., y Torretta, V. (2019). Introduction of the circular economy within developing regions: A comparative analysis of advantages and opportunities for waste valorization. Journal of Environmental Management, (230), 366-378. https://doi.org/10.1016/j.jenvman.2018.09.095
- Hidalgo Signes, C., Garzón Roca, J., Martinez Fernandez, P., Garrido de la Torre, M. E., y Insa Franco, R. (2016). Swelling potential reduction of Spanish argillaceous marlstone Facies Tap Soil through the addition of cumb rubber particles from scrap tyres. Applied Clay Science, (132-133), 768-773. https://doi.org/10.1016/j.clay.2016.07.027
- Hidalgo Signes, C., Martínez Fernández, P., Medel Perallón, E., y Insa Franco, R. (2015). Characterisation of an unbound granular mixture with wsate tyre rubber for subballast layers. Materials and Structures, (48), 3847-3861. https://doi.org/10.1617/s11527-014-0443-z
- Hosseinnezhad, S., Kabir, S., Oldham, D., Mousavi, M., y Fini, E. (2019). Surface functionalization of rubber particles to reduce phase separation in rubberized asphalt for sustainable construction. Journal of Cleaner Production, (225), 82-89. https://doi.org/10.1016/j.jclepro.2019.03.219
- Instituto Colombiano de Normas Técnicas. (2004). Ingeniería Civil y Arquitectura. Bloques de suelo cemento para muros y divisiones. Definiciones. Especificaciones. Métodos de ensayo y Condiciones de entrega (NTC 5324). ICONTEC.
- Instituto Colombiano de Normas Técnicas. (2003). Ingeniería y Arquitectura. Método de ensayo para determinar la resistencia a la compresión de muretes de mampostería (NTC 3495). ICONTEC.
- Instituto Colombiano de Normas Técnicas. (2005). Ingeniería y Arquitectura. Métodos para muestreo y ensayos de unidades de mampostería y otros productos de arcilla (NTC 4017). ICONTEC.
- Instituto Colombiano de Normas Técnicas. (2016). Ingeniería Civil y Arquitectura. Unidades de mampostería de arcilla cocida. Ladrillos y bloques cerámicos (NTC 4205). ICONTEC.
- Jang, J., Yoo, T., Oh, J., y Iwasaki, I. (1998). Discarded tire recycling practices in the United States, Japan and Korea. Resources, Conservation and Recycling, 22(1-2), 1-14. https://doi.org/10.1016/S0921-3449(97)00041-4
- Kida, M., Ziembowicz, S., Pochwat, K., y Koszelnik, P. (2022). Experimental and computational hazard prediction associated with reuse of recycled car tire material. Journal of Hazardous Materials, (438), e129489. https://doi.org/10.1016/j.jhazmat.2022.129489
- Köroğlu, M. (2010). Mechanical properties of fiber reinforced composite concrete. Engineering Science and Technology, 330-336. https://doi.org/10.15317/Scitech.2016.62
- Lara Guerrero, E., Guerrero Cuasapaz, D., y Altamirano León, B. (2020). Influencia de las partículas de caucho en la resistencia a la compresión de bloques de concreto. Revista Técnica de la Facultad de Ingeniería, 43(3), 134-141. https://doi.org/10.22209/rt.v43n3a03
- Mantilla-Forero, J., y Castañeda Pinzón, E. (2019). Assessment of simultaneous incorporation of crumb rubber and asphaltite in asphalt binders. DYNA, 86(208), 257-263. https://doi.org/10.15446/dyna.v86n208.69400
- Medina, N., García, R., Hajirasouliha, I., Pilakoutas, K., y Raffoul, S. (2018). Composites with recycled rubber aggregates: Properties and opportunities in construction. Construction and Building materials, (118), 884-897. https://doi.org/10.1016/j.conbuildmat.2018.08.069
- Minghua, Z., Xiumin, F., Rovetta, A., Qichang, H., Vicentini, F., Bingkai, L., Alessandro, G., y Yi, L. (2009). Municipal solid waste management in Pudong New Area, China. Waste Management, 29(3), 1227-1233. https://doi.org/10.1016/j.wasman.2008.07.016
- Moasas, A., Amin, M., Khan, K., Ahmad, W., Ahmad Al-Hashem, M., Deifalla, A., y Ahmad, A. (2022). A worldwide development in the accumulation of waste tires and its utilization in concrete as a sustainable construction material: A review. Case Studies in Construction
- Materials, (17), e01677. https://doi.org/10.1016/j.cscm.2022.e01677
- Mohammad, S., Chaitanya Krishna, T., Saketh, T., Yashwanth Ganesh, C., y Sathyan, D. (2023). Fresh and hardened state properties of waste tire fiber and steel fiber reinforced concrete. Materials Today Proceedings, 80(2), 443-448. https://doi.org/10.1016/j.matpr.2022.10.195
- Nunton, J., Portocarrero, J., y Muñoz, S. (2022). Review of the mechanical behavior of concrete with the addition of steel fibers from recycled tires. Ingeniería y Competitividad, 24(2), 1-18. https://doi.org/10.25100/iyc.v24i2.11741
- Ospina, J., y Villada Gil, S. (2011). Métodos para caracterizar combustibles líquidos y gaseosos obtenidos de llantas en desuso a través de las normas ASTM. Lámpsakos, (6), 23-31. https://doi.org/10.21501/21454086.830
- Peláez Arroyave, G., Velásquez Restrepo, S., y Giraldo Vásquez, D. (2017). Applications of reclycled rubber: A literature review. Ciencia e Ingeniería Neogranadina, 27(2), 1-24. https://doi.org/10.18359/rcin.2143
- Peña Merladet, E. (2016). Evaluación de impacto ambiental en el plano de inundación del río Yara en el tramo urbano del municipio Yara. Revista Cubana de Ciencias Forestales, 4(1), 59-71.
- Rada, E., Tolkou, A., Katsoyiannis, I., Magaril, E., Kiselev, A., Conti, F., Schiavon, M., y Torretta, V. (2021). Evaluating global municipal solid waste management efficiency from a circular economy point of view. WIT Transactions on Ecology and the Environment, (253), 207-218. https://doi.org/10.2495/SC210181
- Rodrigues André, F., y Galal Aboelkheir, M. (2022). Sustainable approach of applying previous treatment of tire wastes as raw material in cement composites: Review. Materials Today: Proceedings, (58), 1557-1565. https://doi.org/10.1016/j.matpr.2022.03.456
- Salinas Tacumá, F., Landínez Téllez, D., Garzón Posada, A., y Roa Rojas, J. (2019). Caracterización magnética de material compuesto con matriz de resina epoxi y llanta en desuso reforzado con magnetita en diferentes proporciones. TecnoLógicas, 22(44), 81-95. https://doi.org/10.22430/22565337.999
- Sampaio, D., Tashima, M., Costa, D., Quinteiro, P., Dias, A., y Akasaki, J. (2022). Evaluation of the environmental performance of rice husk ash and tire rubber residues incorporated in concrete slabs. Construction and Building materials, (357), e129332. https://doi.org/10.1016/j.conbuildmat.2022.129332
- Segre, S., y Joekes, I. (2000). Use of tire rubber particle as addition to cement paste. Cement and Concrete Research, (30), 1421-1425. https://doi.org/10.1016/S0008-8846(00)00373-2
- Sengul, O. (2016). Mechanical behavior of concretes containing waste steel fibers recovered from scrap tires. Construction and Building Materials, (122), 649-658. https://doi.org/10.1016/j.conbuildmat.2016.06.113
- Serrano Guzmán, M. F., Torrado Gómez, L. M., Pérez Ruiz, D. D., Solarte Vanegas, N. C., y Serrano Guzmán, D. E. (2014). Aplicación de Prefabricados ecológicos: Análisis de Mercado. Universidad Pontificia Bolivariana, Bucaramanga.
- Shaaban, I., Rizzuto, J., El-Nemr, A., Bohan, L., Ahmed, H., y Tindyebwa, H. (2021). Mechanical properties and air permeability of concrete containing waste tires extracts. Journal of Materials in Civil Engineering, 33(2), 1-6. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003588
- Sivapriya, V. (2018). Stress-strain and penetration characteristics of clay modified with crumb rubber. Revista Facultad de Ingeniería, 27(49), 65-75. https://doi.org/10.19053/01211129.v28.n49.2018.8745
- Tasalloti, A., Chiaro, G., Murali, A., Banasiak, L., Palermo, A., y Granello, G. (2021). Recycling of End-of-Life Tires (ELTs) for Sustainable Geotechnical Applications: A New Zealand Perspective. Applied Sciences, 11(17), e7824. https://doi.org/10.3390/app11177824
- Thomas, B., Gupta, R., y Panicker, V. (2016). Recycling of waste tire rubber as aggregate in concrete: durability-related performance. Journal of Cleaner Production, (112), 504-513. https://doi.org/10.1016/j.jclepro.2015.08.046
- Torrado Gómez, L., y Serrano Guzmán, M. F. (2016). Guía para el laboratorio de materiales de construcción. Universidad Pontificia Bolivariana, Bucaramanga.
- Urrego Yepes, W., Carona Vásquez, N., Velásquez Restrepo, S., y Abril Carrascal, C. (2017). Revisión - Caracterización de compuestos de caucho con residuos de cuero posindustria. Prospectiva, 15(2), 13-25. https://doi.org/10.15665/rp.v15i2.776
- Valencia-Villegas, J., González-Mesa, A., y Arbeláez-Pérez, O. (2021). Properties of modified concrete with crumb rubber: Effect of the incorporation of hollow glass microspheres. Revista Facultad de Ingeniería Universidad de Antioquia, (98), 59-68. https://doi.org/10.17533/udea.redin.20200473
- Valkenburg, C., Walton, C., Thompson, B., Gerber, M., Jones, S., y Stevens, D. (2008). Municipal solid Waste (MSW) to Liquid Fuels Synthesis. Vol. 1: Availability of Feedstock and Technology. Pacific Northwest National Laboratory. https://doi.org/10.2172/962858
- Viceministerio de Gestión Ambiental. (2010). Guía para la Evaluación de Riesgos Ambientales. Ministerio del Ambiente, Perú. https://www.minam.gob.pe/calidadambiental/wp-content/uploads/sites/22/2013/10/guia_riesgos_ambientales.pdf
- Villaquirán-Caicedo, M., Perea, V., Ruiz, J., y Mejía de Gutiérrez, R. (2022). Mechanical, physical and thermoacoustic properties of lightweight composite geopolymers. Ingeniería y Competitividad, 24(1), e20710985.
- Xu, X., Leng, Z., Lan, J., Wang, W., Yu, J., Bai, Y., Sreeram, A., y Hu, J. (2021). Sustainable Practice in Pavement Engineering through Value-Added Collective Recycling of Waste Plastic and Waste Tyre Rubber. Engineering, 7(6), 857-867. https://doi.org/10.1016/j.eng.2020.08.020
- Yang, G. (1993). Recycling of discarded tires in Taiwan. Resources, Conservation and Recycling, 9(3), 191-199. https://doi.org/10.1016/0921-3449(93)90003-X
- Zheng, X., Pramanik, A., Basak, A., Prakash, C., y Shankar, S. (2022). Material recovery and recycling of waste tyres-A review. Cleaner Materials, (5), e100115. https://doi.org/10.1016/j.clema.2022.100115