Skip to main navigation menu Skip to main content Skip to site footer

Ecoladrillos: An alternative for the Use of Recycled Clay and Rubber Grain

Abstract

The excessive population growth accompanied by the variety of economic activities that humanity carries out to obtain sustenance are triggering an increase in the consumption of natural resources and in the production of waste, with the consequent environmental impact. This reality has motivated looking for alternatives to incorporate certain waste into the production chain in order to reduce overconsumption of raw materials in certain construction materials. For this reason, for example, there are options to use raw material recovered from tires in asphalt mixes, mortar, and concrete, among others. This study demonstrates the technical, environmental and economic viability of eco-bricks of soil-cement and soil-cement-grain plastic GCR. Masonry was made of 70% previously sieved clay with 20% cement and 10% sand, adding the necessary water for workability. Also, clay-cement and recycled rubber (GCR) specimens were prepared using 7% of rubber that was the addition that favored the mechanical behavior of the prepared brick. The general analysis of the technical, environmental and economic results obtained allows us to affirm that these eco-bricks contribute to the disposal of waste.

 JEL Codes: R31

Received: 03/03/2023.  Accepted: 01/05/2023.  Published: 14/06/2023. 

 

Keywords

eco-brick, rubber grain, insolation, environment, new materials

PDF (Español) XML (Español)

Author Biography

Juan Sebastián Gambin-Martínez

 

 

Tatiana Isabel Bautista-Zapata

 

 

Luz Marina Torrado-Gómez

 

 

 

María Fernanda Serrano Guzmán

 

 

Diego Darío Pérez Ruiz

 

 


References

  1. Abdel-Shafy, H., y Mansour, M. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum, 7(4), 1275-1290. https://doi.org/10.1016/j.ejpe.2018.07.003
  2. Adhikari, B., y Maiti, D. (2000). Reclamation and recycling of waste rubber. Progress in Polymer Sciences, 25(7), 909-948. https://doi.org/10.1016/S0079-6700(00)00020-4
  3. Albidah, A., Alsaif, A., Abadel, A., Abbas, H., y Al-Salloum, Y. (2022). Role of recycled vehicle tires quantity and size on the properties of metakaolin-based geopolymer rubberized concrete. Journal of materials, research and technology, (18), 2593-2607. https://doi.org/10.1016/j.jmrt.2022.03.103
  4. Amiandamhen, S., Adamopoulos, S., Adl-Zarrabi, B., Haiyan, Y., y Norén, J. (2021). Recycling sawmilling wood chips, biomass combustion residues, and tyre fibres into cement-bonded composites: Properties of composites and life cycle analysis. Construction and Building Materials, (297), e123781. https://doi.org/10.1016/j.conbuildmat.2021.123781
  5. Arulrajah, A., Narsilio, G., Kodikara, J., y Orense, R. (2015). Key Issues in Environmental Geotechnics: Australia-New Zealand. Journal of Environmental Geotechnics, 2(6), 326-330. http://dx.doi.org/10.1680/envgeo.14.00005
  6. Asaro, L., Gratton, M., Seghar, S., y Aït Hocine, N. (2018). Recycling of rubber wastes by vulcanization. Resources, Conservation and Recycling, (133), 250-262. https://doi.org/10.1016/j.resconrec.2018.02.016
  7. Asgharzadeh, S., Sadeghi, J., Peivast, P., y Pedram, M. (2018). Fatigue properties of crumb rubber asphalt mixtures used in railways. Construction and Building Materials, (184), 248-257. https://doi.org/10.1016/j.conbuildmat.2018.06.189
  8. Auerbach, P., y Lemery, J. (2017). Enviromedics: The Impact of Climate Change on Human Health. Rowman & Littlefield.
  9. Bakshi, B., Fiksel, J., Baral, A., Guerra, E., y Dequervain, B. (2011). Comparative life cycle assessment of beneficial applications for scrap tires. Clean Technology and Environmental Policy, 13(1), 19-35. https://doi.org/10.1007/s10098-010-0289-1
  10. Batayneh, M., Marie, I., y Asi, I. (2008). Promoting the use of crumb rubber concrete in developing countries. Waste Management, (28), 2171-2176. https://doi.org/10.1016/j.wasman.2007.09.035
  11. Bautista-Zapata, T., y Gambin-Martínez, J. (2017). Análisis del comportamiento físico y mecánico de ladrillos de arcilla modificados con caucho reciclado. [Trabajo de grado, Universidad Pontificia Bolivariana, Bucaramanga]. https://biblioteca.bucaramanga.upb.edu.co/application/index/material/34540
  12. Benallal, B., Roy, C., Pakdel, H., Chabot, S., y Poirier, M. (1995). Characterization of pyrolytic light naphtha from vacuum pyrolysis of used tyres comparison with petroleum naphtha. Fuel, 74(11), 1589-1594. https://doi.org/10.1016/0016-2361(95)00165-2
  13. Cámara de Comercio de Bogotá. (2006). Guía para el manejo de llantas usadas. Un sector transporte con operación más limpia. Editorial Kimpres.
  14. Carrillo, J., y Díaz, C. (2020). Mechanical Properties of Concrete Slabs Reinforced with Recycled Steel Fibers from Post-Consumer Tires in Bogotá, Colombia. Ciencia e Ingeniería Neogranadina, 30(2), 67-79. https://doi.org/10.18359/rcin.4412
  15. Chen, Z., Wang, T., Pei, J., Amirkhanian, S., Xiao, F., Ye, Q., y Fan, Z. (2019). Low temperature and fatigue characteristics of treated crumb rubber modified asphalt after a long term aging procedure. Journal of Cleaner Production, (234), 1262-1274. https://doi.org/10.1016/j.jclepro.2019.06.147
  16. Crespo Villalaz, C. (2004). Mecánica de suelos y cimentaciones. (5ta ed.). Limusa.
  17. de La Cruz Velasco, L., Chamorro-Mejía, J., y Córdoba-Cely, C. (2021). Characterization Physico-chemical and mechanical of 4 vegetable fibers used as artisanal raw materials in the Department of Nariño. DYNA, 88(216), 96-102. https://doi.org/10.15446/dyna.v88n216.87958
  18. Delgado-Jojoa, M., Sánchez-Gilede, J., Rondón-Quintana, H., Fernández-Gómez, W., y Reyes-Lizcano, F. (2018). Influence of four non-conventional additives on the physical, rheological and thermal properties of an asphalt. Ingeniería e Investigación, 38(2), 18-26. https://doi.org/10.15446/ing.investig.v38n2.68638
  19. Eco Máquinas. (2020). Manual Eco-Brava. https://www.ecomaquinas.com.br/maquina/eco-brava-semi-manual/
  20. Ellen MacArthur Foundation. (2013). Towards the Circular Economy. Economic and business rationale for an accelerated transition. https://tinyurl.com/mub298us
  21. Ferronato, N., Rada, E., Gorritty Portillo, M., Cioca, L., Ragazzi, M., y Torretta, V. (2019). Introduction of the circular economy within developing regions: A comparative analysis of advantages and opportunities for waste valorization. Journal of Environmental Management, (230), 366-378. https://doi.org/10.1016/j.jenvman.2018.09.095
  22. Hidalgo Signes, C., Garzón Roca, J., Martinez Fernandez, P., Garrido de la Torre, M. E., y Insa Franco, R. (2016). Swelling potential reduction of Spanish argillaceous marlstone Facies Tap Soil through the addition of cumb rubber particles from scrap tyres. Applied Clay Science, (132-133), 768-773. https://doi.org/10.1016/j.clay.2016.07.027
  23. Hidalgo Signes, C., Martínez Fernández, P., Medel Perallón, E., y Insa Franco, R. (2015). Characterisation of an unbound granular mixture with wsate tyre rubber for subballast layers. Materials and Structures, (48), 3847-3861. https://doi.org/10.1617/s11527-014-0443-z
  24. Hosseinnezhad, S., Kabir, S., Oldham, D., Mousavi, M., y Fini, E. (2019). Surface functionalization of rubber particles to reduce phase separation in rubberized asphalt for sustainable construction. Journal of Cleaner Production, (225), 82-89. https://doi.org/10.1016/j.jclepro.2019.03.219
  25. Instituto Colombiano de Normas Técnicas. (2004). Ingeniería Civil y Arquitectura. Bloques de suelo cemento para muros y divisiones. Definiciones. Especificaciones. Métodos de ensayo y Condiciones de entrega (NTC 5324). ICONTEC.
  26. Instituto Colombiano de Normas Técnicas. (2003). Ingeniería y Arquitectura. Método de ensayo para determinar la resistencia a la compresión de muretes de mampostería (NTC 3495). ICONTEC.
  27. Instituto Colombiano de Normas Técnicas. (2005). Ingeniería y Arquitectura. Métodos para muestreo y ensayos de unidades de mampostería y otros productos de arcilla (NTC 4017). ICONTEC.
  28. Instituto Colombiano de Normas Técnicas. (2016). Ingeniería Civil y Arquitectura. Unidades de mampostería de arcilla cocida. Ladrillos y bloques cerámicos (NTC 4205). ICONTEC.
  29. Jang, J., Yoo, T., Oh, J., y Iwasaki, I. (1998). Discarded tire recycling practices in the United States, Japan and Korea. Resources, Conservation and Recycling, 22(1-2), 1-14. https://doi.org/10.1016/S0921-3449(97)00041-4
  30. Kida, M., Ziembowicz, S., Pochwat, K., y Koszelnik, P. (2022). Experimental and computational hazard prediction associated with reuse of recycled car tire material. Journal of Hazardous Materials, (438), e129489. https://doi.org/10.1016/j.jhazmat.2022.129489
  31. Köroğlu, M. (2010). Mechanical properties of fiber reinforced composite concrete. Engineering Science and Technology, 330-336. https://doi.org/10.15317/Scitech.2016.62
  32. Lara Guerrero, E., Guerrero Cuasapaz, D., y Altamirano León, B. (2020). Influencia de las partículas de caucho en la resistencia a la compresión de bloques de concreto. Revista Técnica de la Facultad de Ingeniería, 43(3), 134-141. https://doi.org/10.22209/rt.v43n3a03
  33. Mantilla-Forero, J., y Castañeda Pinzón, E. (2019). Assessment of simultaneous incorporation of crumb rubber and asphaltite in asphalt binders. DYNA, 86(208), 257-263. https://doi.org/10.15446/dyna.v86n208.69400
  34. Medina, N., García, R., Hajirasouliha, I., Pilakoutas, K., y Raffoul, S. (2018). Composites with recycled rubber aggregates: Properties and opportunities in construction. Construction and Building materials, (118), 884-897. https://doi.org/10.1016/j.conbuildmat.2018.08.069
  35. Minghua, Z., Xiumin, F., Rovetta, A., Qichang, H., Vicentini, F., Bingkai, L., Alessandro, G., y Yi, L. (2009). Municipal solid waste management in Pudong New Area, China. Waste Management, 29(3), 1227-1233. https://doi.org/10.1016/j.wasman.2008.07.016
  36. Moasas, A., Amin, M., Khan, K., Ahmad, W., Ahmad Al-Hashem, M., Deifalla, A., y Ahmad, A. (2022). A worldwide development in the accumulation of waste tires and its utilization in concrete as a sustainable construction material: A review. Case Studies in Construction
  37. Materials, (17), e01677. https://doi.org/10.1016/j.cscm.2022.e01677
  38. Mohammad, S., Chaitanya Krishna, T., Saketh, T., Yashwanth Ganesh, C., y Sathyan, D. (2023). Fresh and hardened state properties of waste tire fiber and steel fiber reinforced concrete. Materials Today Proceedings, 80(2), 443-448. https://doi.org/10.1016/j.matpr.2022.10.195
  39. Nunton, J., Portocarrero, J., y Muñoz, S. (2022). Review of the mechanical behavior of concrete with the addition of steel fibers from recycled tires. Ingeniería y Competitividad, 24(2), 1-18. https://doi.org/10.25100/iyc.v24i2.11741
  40. Ospina, J., y Villada Gil, S. (2011). Métodos para caracterizar combustibles líquidos y gaseosos obtenidos de llantas en desuso a través de las normas ASTM. Lámpsakos, (6), 23-31. https://doi.org/10.21501/21454086.830
  41. Peláez Arroyave, G., Velásquez Restrepo, S., y Giraldo Vásquez, D. (2017). Applications of reclycled rubber: A literature review. Ciencia e Ingeniería Neogranadina, 27(2), 1-24. https://doi.org/10.18359/rcin.2143
  42. Peña Merladet, E. (2016). Evaluación de impacto ambiental en el plano de inundación del río Yara en el tramo urbano del municipio Yara. Revista Cubana de Ciencias Forestales, 4(1), 59-71.
  43. Rada, E., Tolkou, A., Katsoyiannis, I., Magaril, E., Kiselev, A., Conti, F., Schiavon, M., y Torretta, V. (2021). Evaluating global municipal solid waste management efficiency from a circular economy point of view. WIT Transactions on Ecology and the Environment, (253), 207-218. https://doi.org/10.2495/SC210181
  44. Rodrigues André, F., y Galal Aboelkheir, M. (2022). Sustainable approach of applying previous treatment of tire wastes as raw material in cement composites: Review. Materials Today: Proceedings, (58), 1557-1565. https://doi.org/10.1016/j.matpr.2022.03.456
  45. Salinas Tacumá, F., Landínez Téllez, D., Garzón Posada, A., y Roa Rojas, J. (2019). Caracterización magnética de material compuesto con matriz de resina epoxi y llanta en desuso reforzado con magnetita en diferentes proporciones. TecnoLógicas, 22(44), 81-95. https://doi.org/10.22430/22565337.999
  46. Sampaio, D., Tashima, M., Costa, D., Quinteiro, P., Dias, A., y Akasaki, J. (2022). Evaluation of the environmental performance of rice husk ash and tire rubber residues incorporated in concrete slabs. Construction and Building materials, (357), e129332. https://doi.org/10.1016/j.conbuildmat.2022.129332
  47. Segre, S., y Joekes, I. (2000). Use of tire rubber particle as addition to cement paste. Cement and Concrete Research, (30), 1421-1425. https://doi.org/10.1016/S0008-8846(00)00373-2
  48. Sengul, O. (2016). Mechanical behavior of concretes containing waste steel fibers recovered from scrap tires. Construction and Building Materials, (122), 649-658. https://doi.org/10.1016/j.conbuildmat.2016.06.113
  49. Serrano Guzmán, M. F., Torrado Gómez, L. M., Pérez Ruiz, D. D., Solarte Vanegas, N. C., y Serrano Guzmán, D. E. (2014). Aplicación de Prefabricados ecológicos: Análisis de Mercado. Universidad Pontificia Bolivariana, Bucaramanga.
  50. Shaaban, I., Rizzuto, J., El-Nemr, A., Bohan, L., Ahmed, H., y Tindyebwa, H. (2021). Mechanical properties and air permeability of concrete containing waste tires extracts. Journal of Materials in Civil Engineering, 33(2), 1-6. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003588
  51. Sivapriya, V. (2018). Stress-strain and penetration characteristics of clay modified with crumb rubber. Revista Facultad de Ingeniería, 27(49), 65-75. https://doi.org/10.19053/01211129.v28.n49.2018.8745
  52. Tasalloti, A., Chiaro, G., Murali, A., Banasiak, L., Palermo, A., y Granello, G. (2021). Recycling of End-of-Life Tires (ELTs) for Sustainable Geotechnical Applications: A New Zealand Perspective. Applied Sciences, 11(17), e7824. https://doi.org/10.3390/app11177824
  53. Thomas, B., Gupta, R., y Panicker, V. (2016). Recycling of waste tire rubber as aggregate in concrete: durability-related performance. Journal of Cleaner Production, (112), 504-513. https://doi.org/10.1016/j.jclepro.2015.08.046
  54. Torrado Gómez, L., y Serrano Guzmán, M. F. (2016). Guía para el laboratorio de materiales de construcción. Universidad Pontificia Bolivariana, Bucaramanga.
  55. Urrego Yepes, W., Carona Vásquez, N., Velásquez Restrepo, S., y Abril Carrascal, C. (2017). Revisión - Caracterización de compuestos de caucho con residuos de cuero posindustria. Prospectiva, 15(2), 13-25. https://doi.org/10.15665/rp.v15i2.776
  56. Valencia-Villegas, J., González-Mesa, A., y Arbeláez-Pérez, O. (2021). Properties of modified concrete with crumb rubber: Effect of the incorporation of hollow glass microspheres. Revista Facultad de Ingeniería Universidad de Antioquia, (98), 59-68. https://doi.org/10.17533/udea.redin.20200473
  57. Valkenburg, C., Walton, C., Thompson, B., Gerber, M., Jones, S., y Stevens, D. (2008). Municipal solid Waste (MSW) to Liquid Fuels Synthesis. Vol. 1: Availability of Feedstock and Technology. Pacific Northwest National Laboratory. https://doi.org/10.2172/962858
  58. Viceministerio de Gestión Ambiental. (2010). Guía para la Evaluación de Riesgos Ambientales. Ministerio del Ambiente, Perú. https://www.minam.gob.pe/calidadambiental/wp-content/uploads/sites/22/2013/10/guia_riesgos_ambientales.pdf
  59. Villaquirán-Caicedo, M., Perea, V., Ruiz, J., y Mejía de Gutiérrez, R. (2022). Mechanical, physical and thermoacoustic properties of lightweight composite geopolymers. Ingeniería y Competitividad, 24(1), e20710985.
  60. Xu, X., Leng, Z., Lan, J., Wang, W., Yu, J., Bai, Y., Sreeram, A., y Hu, J. (2021). Sustainable Practice in Pavement Engineering through Value-Added Collective Recycling of Waste Plastic and Waste Tyre Rubber. Engineering, 7(6), 857-867. https://doi.org/10.1016/j.eng.2020.08.020
  61. Yang, G. (1993). Recycling of discarded tires in Taiwan. Resources, Conservation and Recycling, 9(3), 191-199. https://doi.org/10.1016/0921-3449(93)90003-X
  62. Zheng, X., Pramanik, A., Basak, A., Prakash, C., y Shankar, S. (2022). Material recovery and recycling of waste tyres-A review. Cleaner Materials, (5), e100115. https://doi.org/10.1016/j.clema.2022.100115

Downloads

Download data is not yet available.

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.