Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Hidrodestilación asistida por microondas de aceite esencial de Cúrcuma longa (rizomas): optimización mediante superficie de respuesta

Resumen

Las propiedades de las plantas de la familia Zingiberaceae son ampliamente conocidas a nivel mundial, en medicina tradicional, como antiinflamatorio, antioxidante, antiviral, entre otras. Enmarcados en el alto valor bioquímico de esta familia, esta investigación se centró en la optimización de un método de extracción de aceites esenciales de Cúrcuma longa a partir de rizomas secos de muestras colectadas en el Departamento del Quindío (Colombia), utilizando hidrodestilación asistida por microondas y evaluando variables optimizadas por metodología de superficie de respuesta. Los resultados obtenidos de la optimización mostraron una considerable mejora en la extracción de los aceites desde múltiples aspectos y variables, comparados con la hidrodestilación convencional. El rendimiento en la obtención del aceite esencial aumentó en un 32 %, se evidenció un incremento en un 31 % en la α-Turmerona como componente más abundante, el tiempo de extracción se redujo de 120 a 59 minutos, y el consumo de energía y emisión de CO2 se redujo a una tercera parte. Estos interesantes resultados incentivan el potencial mejoramiento de posibles aplicaciones en salud, alimentos o cosmética.

Palabras clave

aceite esencial;, Cúrcuma longa;, hidrodestilación;, optimización

PDF XML

Biografía del autor/a

José Leonardo Cano-Botero

Químico, Estudiante de Maestría en Química

Yeferson Ospina-Balvuena

Químico, Estudiante de Maestría en Química

Jorge Andrés Gutiérrez-Cifuentes

Químico, Doctor en Ciencias Químicas

Eunice Ríos-Vásquez

Química, Doctora en Ciencias Químicas


Citas

  1. Adams, P. R. (2017). Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. USA: Allured Publishing Corporation.
  2. Ait Amer Meziane, I., Maizi, N., Abatzoglou, N., & Benyoussef, E. H. (2020). Modelling and optimization of energy consumption in essential oil extraction processes. Food and Bioproducts Processing, 119, 373–389. https://doi.org/10.1016/J.FBP.2019.11.018 DOI: https://doi.org/10.1016/j.fbp.2019.11.018
  3. Benmoussa, H., Béchohra, I., He, S., Elfalleh, W., & Chawech, R. (2023). Optimization of sonohydrodistillation and microwave assisted hydrodistillation by response surface methodology for extraction of essential oils from Cinnamomum cassia barks. Industrial Crops and Products, 192, 115995. https://doi.org/10.1016/J.INDCROP.2022.115995 DOI: https://doi.org/10.1016/j.indcrop.2022.115995
  4. Boudraa, H., Kadri, N., Mouni, L., & Madani, K. (2021). Microwave-assisted hydrodistillation of essential oil from fennel seeds: Optimization using Plackett–Burman design and response surface methodology. Journal of Applied Research on Medicinal and Aromatic Plants, 23, 100307. https://doi.org/10.1016/J.JARMAP.2021.100307 DOI: https://doi.org/10.1016/j.jarmap.2021.100307
  5. Conde-Hernández, L. A., Botello-Ojeda, A. G., Alonso-Calderón, A. A., Osorio-Lama, M. A., Bernabé-Loranca, M. B., & Chávez-Bravo, E. (2021). Optimization of Extraction of Essential Oils using Response Surface Methodology: A Review. Https://Crai.Referencistas.Com:2093/10.1080/0972060X.2021.1976286, 1–46. https://doi.org/10.1080/0972060X.2021.1976286 DOI: https://doi.org/10.1080/0972060X.2021.1976286
  6. Chen, Y., Xu, F., Pang, M., Jin, X., Lv, H., Li, Z., & Lee, M. (2022). Microwave-assisted hydrodistillation extraction based on microwave-assisted preparation of deep eutectic solvents coupled with GC-MS for analysis of essential oils from clove buds. Sustainable Chemistry and Pharmacy, 27, 100695. https://doi.org/10.1016/J.SCP.2022.100695 DOI: https://doi.org/10.1016/j.scp.2022.100695
  7. De Souza Tavares, W., Akhtar, Y., Gonçalves, G. L. P., Zanuncio, J. C., & Isman, M. B. (2016). Turmeric powder and its derivatives from Curcuma longa rhizomes: Insecticidal effects on cabbage looper and the role of synergists. Scientific Reports, 6 (1), 1–11. https://doi.org/10.1038/SREP34093 DOI: https://doi.org/10.1038/srep34093
  8. Drinić, Z., Pljevljakušić, D., Janković, T., Zdunić, G., Bigović, D., & Šavikin, K. (2021). Hydro-distillation and microwave-assisted distillation of Sideritis raeseri: Comparison of the composition of the essential oil, hydrolat and residual water extract. Sustainable Chemistry and Pharmacy, 24, 100538. https://doi.org/10.1016/J.SCP.2021.100538 DOI: https://doi.org/10.1016/j.scp.2021.100538
  9. Filly, A., Fabiano-Tixier, A. S., Louis, C., Fernandez, X., & Chemat, F. (2016). Water as a green solvent combined with different techniques for extraction of essential oil from lavender flowers. Comptes Rendus Chimie, 19 (6), 707–717. https://doi.org/10.1016/J.CRCI.2016.01.018 DOI: https://doi.org/10.1016/j.crci.2016.01.018
  10. Hearunyakij, M., & Phutdhawong, W. (2022). Optimization, Yield and Chemical Composition of Essential Oil from Kaempferia galanga L. Rhizome: Comparative Study with Microwave Assisted Extraction and Hydrodistillation. Journal of Essential Oil-Bearing Plants, 25 (3), 444–455. https://doi.org/10.1080/0972060X.2022.2108727 DOI: https://doi.org/10.1080/0972060X.2022.2108727
  11. Jeyaratnam, N., Nour, A. H., Kanthasamy, R., Nour, A. H., Yuvaraj, A. R., & Akindoyo, J. O. (2016). Essential oil from Cinnamomum cassia bark through hydrodistillation and advanced microwave assisted hydrodistillation. Industrial Crops and Products, 92, 57–66. https://doi.org/10.1016/J.INDCROP.2016.07.049 DOI: https://doi.org/10.1016/j.indcrop.2016.07.049
  12. Kazemi, M., Niazi, A., & Yazdanipour, A. (2021). Extraction of Satureja Rechingeri volatile components through ultrasound-assisted and microwave-assisted extractions and comparison of the chemical composition with headspace solid-phase microextraction. Https://Crai.Referencistas.Com:2093/10.1080/10412905.2021.1975575. https://doi.org/10.1080/10412905.2021.1975575 DOI: https://doi.org/10.1080/10412905.2021.1975575
  13. Kutti-Gounder, D., & Lingamallu, J. (2012). Comparison of chemical composition and antioxidant potential of volatile oil from fresh, dried and cured turmeric (Curcuma longa) rhizomes. Industrial Crops and Products, 38 (1), 124–131. https://doi.org/10.1016/j.indcrop.2012.01.014 DOI: https://doi.org/10.1016/j.indcrop.2012.01.014
  14. Lainez-Cerón, E., Jiménez-Munguía, M. T., López-Malo, A., & Ramírez-Corona, N. (2021). Effect of process variables on heating profiles and extraction mechanisms during hydrodistillation of eucalyptus essential oil. Heliyon, 7 (10), e08234. https://doi.org/10.1016/J.HELIYON.2021.E08234 DOI: https://doi.org/10.1016/j.heliyon.2021.e08234
  15. Liu, Z., Deng, B., Li, S., & Zou, Z. (2018). Optimization of solvent-free microwave assisted extraction of essential oil from Cinnamomum camphora leaves. Industrial Crops and Products, 124, 353–362. https://doi.org/10.1016/j.indcrop.2018.08.016 DOI: https://doi.org/10.1016/j.indcrop.2018.08.016
  16. López-Hortas, L., Falqué, E., Domínguez, H., & Torres, M. D. (2020). Microwave hydrodiffusion and gravity versus conventional distillation for Acacia dealbata flowers. Recovery of bioactive extracts for cosmetic purposes. Journal of Cleaner Production, 274, 123143. https://doi.org/10.1016/J.JCLEPRO.2020.123143 DOI: https://doi.org/10.1016/j.jclepro.2020.123143
  17. Mallmann, C. A., Brugnari, T., Abreu Filho, B. A. de, Mikcha, J. M. G., & Machinski, M. (2017). Curcuma longa L. essential oil composition, antioxidant effect, and effect on Fusarium verticillioides and fumonisin production. Food Control, 73, 806–813. https://doi.org/10.1016/J.FOODCONT.2016.09.032 DOI: https://doi.org/10.1016/j.foodcont.2016.09.032
  18. Modi, P. I., Parikh, J. K., & Desai, M. A. (2021). Intensified approach towards isolation of cinnamon oil using microwave radiation: parametric, optimization and comparative studies. Industrial Crops and Products, 173, 114088. https://doi.org/10.1016/J.INDCROP.2021.114088 DOI: https://doi.org/10.1016/j.indcrop.2021.114088
  19. Mokhtarikhah, G., Ebadi, M. T., & Ayyari, M. (2020). Qualitative changes of spearmint essential oil as affected by drying methods. Industrial Crops and Products, 153, 112492. https://doi.org/10.1016/J.INDCROP.2020.112492 DOI: https://doi.org/10.1016/j.indcrop.2020.112492
  20. Mollaei, S., Sedighi, F., Habibi, B., Hazrati, S., & Asgharian, P. (2019). Extraction of essential oils of Ferulago angulata with microwave-assisted hydrodistillation. Industrial Crops and Products, 137, 43–51. https://doi.org/10.1016/j.indcrop.2019.05.015 DOI: https://doi.org/10.1016/j.indcrop.2019.05.015
  21. Radivojac, A., Bera, O., Micić, D., Đurović, S., Zeković, Z., Blagojević, S., & Pavlić, B. (2020). Conventional versus microwave-assisted hydrodistillation of sage herbal dust: Kinetics modeling and physico-chemical properties of essential oil. Food and Bioproducts Processing, 123, 90–101. https://doi.org/10.1016/j.fbp.2020.06.015 DOI: https://doi.org/10.1016/j.fbp.2020.06.015
  22. Rajkumari, S., & Sanatombi, K. (2018). Nutritional value, phytochemical composition, and biological activities of edible Curcuma species: A review. Https://Doi-Org.Crai.Referencistas.Com/10.1080/10942912.2017.1387556, 20, S2668–S2687. https://doi.org/10.1080/10942912.2017.1387556 DOI: https://doi.org/10.1080/10942912.2017.1387556
  23. Ray, A., Mohanty, S., Jena, S., Sahoo, A., Acharya, L., Panda, P. C., Sial, P., Duraisamy, P., & Nayak, S. (2021). Drying methods affects physicochemical characteristics, essential oil yield and volatile composition of turmeric (Curcuma longa L.). Journal of Applied Research on Medicinal and Aromatic Plants, 100357. https://doi.org/10.1016/J.JARMAP.2021.100357 DOI: https://doi.org/10.1016/j.jarmap.2021.100357
  24. Sahoo, A., Kar, B., Jena, S., Dash, B., Ray, A., Sahoo, S., & Nayak, S. (2019). Qualitative and Quantitative Evaluation of Rhizome Essential Oil of Eight Different Cultivars of Curcuma longa L. (Turmeric). Https://Doi-Org.Crai.Referencistas.Com/10.1080/0972060X.2019.1599734, 22(1), 239–247. https://doi.org/10.1080/0972060X.2019.1599734 DOI: https://doi.org/10.1080/0972060X.2019.1599734
  25. Singh, G., Kapoor, I. P. S., Singh, P., de Heluani, C. S., de Lampasona, M. P., & Catalán, C. A. N. (2010). Comparative study of chemical composition and antioxidant activity of fresh and dry rhizomes of turmeric (Curcuma longa Linn.). Food and Chemical Toxicology, 48 (4), 1026–1031. https://doi.org/10.1016/J.FCT.2010.01.015 DOI: https://doi.org/10.1016/j.fct.2010.01.015
  26. Solanki, K. P., Desai, M. A., & Parikh, J. K. (2019). Microwave intensified extraction: A holistic approach for extraction of citronella oil and phenolic compounds. Chemical Engineering and Processing - Process Intensification, 146, 107694. https://doi.org/10.1016/j.cep.2019.107694 DOI: https://doi.org/10.1016/j.cep.2019.107694
  27. Villegas, C., Perez, R., Sterner, O., González-Chavarria, I., & Paz, C. (2021). Curcuma as an adjuvant in colorectal cancer treatment. Life Sciences, 286, 120043. https://doi.org/10.1016/J.LFS.2021.120043 DOI: https://doi.org/10.1016/j.lfs.2021.120043
  28. Yue, G. G. L., Kwok, H. F., Lee, J. K. M., Jiang, L., Chan, K. M., Cheng, L., Wong, E. C. W., Leung, P. C., Fung, K. P., & Lau, C. B. S. (2015). Novel anti-angiogenic effects of aromatic-turmerone, essential oil isolated from spice turmeric. Journal of Functional Foods, 15, 243–253. https://doi.org/10.1016/J.JFF.2015.03.030 DOI: https://doi.org/10.1016/j.jff.2015.03.030
  29. Zhang, H., Lou, Z., Chen, X., Cui, Y., Wang, H., Kou, X., & Ma, C. (2019). Effect of simultaneous ultrasonic and microwave assisted hydrodistillation on the yield, composition, antibacterial and antibiofilm activity of essential oils from Citrus medica L. var. sarcodactylis. Journal of Food Engineering, 244, 126–135. https://doi.org/10.1016/J.JFOODENG.2018.09.014 DOI: https://doi.org/10.1016/j.jfoodeng.2018.09.014
  30. Zhang, L., Liang, X., Ou, Z., Ye, M., Shi, Y., Chen, Y., Zhao, J., Zheng, D., & Xiang, H. (2020). Screening of chemical composition, anti-arthritis, antitumor and antioxidant capacities of essential oils from four Zingiberaceae herbs. Industrial Crops and Products, 149, 112342. https://doi.org/10.1016/J.INDCROP.2020.112342 DOI: https://doi.org/10.1016/j.indcrop.2020.112342
  31. Zhang, L., Yang, Z., Chen, F., Su, P., Chen, D., Pan, W., Fang, Y., Dong, C., Zheng, X., & Du, Z. (2017). Composition and bioactivity assessment of essential oils of Curcuma longa L. collected in China. Industrial Crops and Products, 109, 60–73. https://doi.org/10.1016/J.INDCROP.2017.08.009 DOI: https://doi.org/10.1016/j.indcrop.2017.08.009
  32. Zheng, Y., Pan, C., Zhang, Z., Luo, W., Liang, X., Shi, Y., Liang, L., Zheng, X., Zhang, L., & Du, Z. (2020). Antiaging effect of Curcuma longa L. essential oil on ultraviolet-irradiated skin. Microchemical Journal, 154, 104608. https://doi.org/10.1016/j.microc.2020.104608 DOI: https://doi.org/10.1016/j.microc.2020.104608

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 > >> 

También puede {advancedSearchLink} para este artículo.