Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Gestión de la logística humanitaria en las etapas previas al desastre: revisión sistemática de la literatura

Resumen

El objetivo de este trabajo es analizar la forma en que las etapas de mitigación y preparación que hacen parte del proceso de la logística humanitaria son presentadas en la literatura relacionada con el tema. Para esto, se realizó una revisión sistemática de la literatura con el uso de la aplicación Tree of Science de la Universidad Nacional de Colombia – Sede Manizales. La revisión permite reconocer la importancia que estas etapas tienen respecto al nivel de respuesta ante los desastres, así como los tipos de desastres y las decisiones de mitigación y preparación que más comúnmente se abordan. Asimismo, se pone en evidencia una menor participación de estos temas en la literatura especializada. Por lo tanto, ampliar el estudio de las etapas de mitigación y preparación hacia otros tipos de desastres y en otros contextos geográficos, constituye un campo de interés para futuras investigaciones.

Palabras clave

logística humanitaria, Tree of Science, mitigación de desastres, preparación de desastres

PDF XML

Biografía del autor/a

Juan Camilo López-Vargas

Ingeniero Industrial, Magíster en Ingeniería,

Diana María Cárdenas-Aguirre

Ingeniera Industrial, Doctora en Ciencias Técnicas


Citas

  1. Abidi, H., de Leeuw, S., & Klumpp, M. (2014). Humanitarian Supply Chain Performance Management: A Systematic Literature Review. Supply Chain Management: An International Journal, 19 (5/6), 592-608. doi: 10.1108/SCM-09-2013-0349 DOI: https://doi.org/10.1108/SCM-09-2013-0349
  2. Afsar, H. M., Prins, C., & Santos, A. C. (2014). Exact and heuristic algorithms for solving the generalized vehicle routing problem with flexible fleet size. International Transactions in Operational Research, 21 (1), 153-175. doi: 10.1111/itor.12041 DOI: https://doi.org/10.1111/itor.12041
  3. Altay, N., & Green, W. G. (2006). OR/MS research in disaster operations management. European Journal of Operational Research, 175 (1), 475–493. doi: 10.1016/j.ejor.2005.05.016 DOI: https://doi.org/10.1016/j.ejor.2005.05.016
  4. Anaya-Arenas, A. M., Renaud, J., & Ruiz, A. (2014). Relief distribution networks: a systematic review. Annals of Operations Research, 223 (1), 53-79. doi: 10.1007/s10479-014-1581-y DOI: https://doi.org/10.1007/s10479-014-1581-y
  5. Balcik, B. & Beamon, B. M. (2008). Facility location in humanitarian relief. International Journal of Logistics: Research and Applications, 11 (2), 101-121. doi: 10.1080/13675560701561789 DOI: https://doi.org/10.1080/13675560701561789
  6. Baldini, G., Oliveri, F., Braun, M., Seuschek, H., & Hess, E. (2012). Securing disaster supply chains with cryptography enhanced RFID. Disaster Prevention and Management: An International Journal, 21 (1), 51-70. doi: 10.1108/09653561211202700 DOI: https://doi.org/10.1108/09653561211202700
  7. Barbarosoğlu, G., & Arda, Y. (2004). A two-stage stochastic programming framework for transportation planning in disaster response. Journal of the Operational Research Society, 55 (1), 43-53. doi: 10.1057/palgrave.jors.2601652 DOI: https://doi.org/10.1057/palgrave.jors.2601652
  8. Bell, M. G. H., Fonzone, A., & Polyzoni, C. (2014). Depot location in degradable transport networks. Transportation Research Part B-Methodological, 66, 148-161. doi: 10.1016/j.trb.2013.11.003 DOI: https://doi.org/10.1016/j.trb.2013.11.003
  9. Camacho-Vallejo, J. F., González-Rodríguez, E., Almaguer, F. J., & González-Ramírez, R. G. (2015). A bi-level optimization model for aid distribution after the occurrence of a disaster. Journal of Cleaner Production, 105, 134-145. doi: 10.1016/j.jclepro.2014.09.069 DOI: https://doi.org/10.1016/j.jclepro.2014.09.069
  10. Chakravarty, A. K. (2014). Humanitarian relief chain: Rapid response under uncertainty. International Journal of Production Economics, 151 (1), 146-157. doi: 10.1016/j.ijpe.2013.10.007 DOI: https://doi.org/10.1016/j.ijpe.2013.10.007
  11. Das, R., & Hanaoka, S. (2014). Relief inventory modelling with stochastic lead-time and demand. European Journal of Operational Research, 235 (3), 616-623. doi: 10.1016/j.ejor.2013.12.042 DOI: https://doi.org/10.1016/j.ejor.2013.12.042
  12. Day, J. M., Melnyk, S. A., Larson, P. D., Davis, E. W., & Whybark, D. C. (2012). Humanitarian and disaster relief supply chains: a matter of life and death. Journal of Supply Chain Management, 48 (2), 21-36. doi: 10.1111/j.1745-493X.2012.03267.x DOI: https://doi.org/10.1111/j.1745-493X.2012.03267.x
  13. Edrissi, A., Nourinejad, M., & Roorda, M. J. (2015). Transportation network reliability in emergency response. Transportation Research Part E-Logistics and Transportation Review, 80, 56-73. doi: 10.1016/j.tre.2015.05.005 DOI: https://doi.org/10.1016/j.tre.2015.05.005
  14. Eftekhar, M., Masini, A., Robotis, A., & Van Wassenhove, L. N. (2014). Vehicle Procurement Policy for Humanitarian Development Programs. Production and Operations Management, 23 (6), 951–964. doi: 10.1111/poms.12108 DOI: https://doi.org/10.1111/poms.12108
  15. FEMA. (2010). The Four Phases Of Emergency Management. Recuperado de: https://training.fema.gov/emiweb/downloads/is10_unit3.doc
  16. Garrido, R. A., Lamas, P., & Pino, F. J. (2015). A stochastic programming approach for floods emergency logistics. Transportation Research Part E-Logistics and Transportation Review, 75, 18-31. doi: 10.1016/j.tre.2014.12.002 DOI: https://doi.org/10.1016/j.tre.2014.12.002
  17. Gutjahr, W. J., & Dzubur, N. (2016). Bi-objective bilevel optimization of distribution center locations considering user equilibria. Transportation Research Part E-Logistics and Transportation Review, 85, 1-22. doi: 10.1016/j.tre.2015.11.001 DOI: https://doi.org/10.1016/j.tre.2015.11.001
  18. Hadiguna, R. A., Kamil, I., Delati, A., & Reed, R. (2014). Implementing a web-based decision support system for disaster logistics: A case study of an evacuation location assessment for Indonesia. International Journal of Disaster Risk Reduction, 9, 38-47. doi: 10.1016/j.ijdrr.2014.02.004 DOI: https://doi.org/10.1016/j.ijdrr.2014.02.004
  19. Haghani, A., & Oh, S. C. (1996). Formulation and Solution of a Multi-Commodity, Multi-Modal Network Flow Model for Disaster Relief Operations. Transportation Research Part A-Policy and Practice, 30 (3), 231-250. doi: 10.1016/0965-8564(95)00020-8 DOI: https://doi.org/10.1016/0965-8564(95)00020-8
  20. Holguín-Veras, J., Pérez, N., Jaller, M., Van Wassenhove, L. N., & Aros-Vera, F. (2013). On the appropriate objective function for post-disaster humanitarian logistics models. Journal of Operations Management, 31 (5), 262-280. doi: 10.1016/j.jom.2013.06.002 DOI: https://doi.org/10.1016/j.jom.2013.06.002
  21. Hong, X., Lejeune, M. A., & Noyan, N. (2015). Stochastic Network Design for Disaster Preparedness. IIE Transactions, 47 (4), 329-357. doi: 10.1080/0740817X.2014.919044 DOI: https://doi.org/10.1080/0740817X.2014.919044
  22. Hoyos, M. C., Morales, R. S., & Akhavan-Tabatabaei, R. (2015). OR models with stochastic components in disaster operations management: A literature survey. Computers & Industrial Engineering, 82, 183-197. doi: 10.1016/j.cie.2014.11.025 DOI: https://doi.org/10.1016/j.cie.2014.11.025
  23. İvgin, M. (2013). The decision-making models for relief asset management and interaction with disaster mitigation. International Journal of Disaster Risk Reduction, 5, 107-116. doi: 10.1016/j.ijdrr.2013.08.005 DOI: https://doi.org/10.1016/j.ijdrr.2013.08.005
  24. Kovács, G., & Spens, K. M. (2007). Humanitarian logistics in disaster relief operations. International Journal of Physical Distribution & Logistics Management, 37 (2), 99-114. doi: 10.1108/09600030710734820 DOI: https://doi.org/10.1108/09600030710734820
  25. Kovács, G., & Spens, K. M. (2009). Identifying challenges in humanitarian logistics. International Journal of Physical Distribution & Logistics Management, 39 (6), 506-528. doi: 10.1108/09600030910985848 DOI: https://doi.org/10.1108/09600030910985848
  26. Kunz, N., Reiner, G., & Gold, S. (2014). Investing in disaster management capabilities versus pre-positioning inventory: A new approach to disaster preparedness, International Journal of Production Economics, 157, 261-272. doi: 10.1016/j.ijpe.2013.11.002 DOI: https://doi.org/10.1016/j.ijpe.2013.11.002
  27. Lassiter, K., Khademi, A., & Taaffe, K. M. (2015). A robust optimization approach to volunteer management in humanitarian crises. International Journal of Production Economics, 163, 97-111. doi: 10.1016/j.ijpe.2015.02.018 DOI: https://doi.org/10.1016/j.ijpe.2015.02.018
  28. Liu, Y., & Guo, B. (2014). A Lexicographic Approach to Postdisaster Relief Logistics Planning Considering Fill Rates and Costs under Uncertainty. Mathematical Problems in Engineering. Article ID 939853, 17. doi: 10.1155/2014/939853 DOI: https://doi.org/10.1155/2014/939853
  29. Matopoulos, A., Kovács, G., & Hayes, O. (2014). Local Resources and Procurement Practices in Humanitarian Supply Chains: An Empirical Examination of Large-Scale House Reconstruction Projects. Decision Sciences, 45 (4), 621-646. doi: 10.1111/deci.12086 DOI: https://doi.org/10.1111/deci.12086
  30. Maya-Duque, P. A., Dolinskaya, I. S., & Sörensen, K. (2016). Network repair crew scheduling and routing for emergency relief distribution problem. European Journal of Operational Research, 248 (1), 272-285. doi: 10.1016/j.ejor.2015.06.026 DOI: https://doi.org/10.1016/j.ejor.2015.06.026
  31. Najafi, M., Farahani, R. Z., De Brito, M. P., & Dullaert, W. (2015). Location and Distribution Management of Relief Centers: A Genetic Algorithm Approach. International Journal of Information Technology & Decision Making, 14 (4), 769-803. doi: 10.1142/S0219622014500382 DOI: https://doi.org/10.1142/S0219622014500382
  32. Oloruntoba, R., & Gray, R. (2009). Customer service in emergency relief chains. International Journal of Physical Distribution & Logistics Management, 39 (6), 486-505. doi: 10.1108/09600030910985839 DOI: https://doi.org/10.1108/09600030910985839
  33. Özdamar, L., & Ertem, M. A. (2015). Models, solutions and enabling technologies in humanitarian logistics. European Journal of Operational Research, 244 (1), 55-65. doi: 10.1016/j.ejor.2014.11.030 DOI: https://doi.org/10.1016/j.ejor.2014.11.030
  34. Ozguven, E. E., & Ozbay, K. (2015). An RFID-based inventory management framework for emergency relief operations. Transportation Research Part C-Emerging Technologies, 57, 166-187. doi: 10.1016/j.trc.2015.06.021 DOI: https://doi.org/10.1016/j.trc.2015.06.021
  35. Pazirandeh, A. (2011). Sourcing in global health supply chains for developing countries. International Journal of Physical Distribution & Logistics Management, 41 (4), 364-384. doi: 10.1108/09600031111131931 DOI: https://doi.org/10.1108/09600031111131931
  36. Pettit, S., & Beresford, A. (2009). Critical success factors in the context of humanitarian aid supply chains. International Journal of Physical Distribution & Logistics Management, 39 (6), 450-468. doi: 10.1108/09600030910985811 DOI: https://doi.org/10.1108/09600030910985811
  37. Rancourt, M. È., Cordeau, J. F., Laporte, G., & Watkins, B. (2015). Tactical network planning for food aid distribution in Kenya. Computers & Operations Research, 56, 68-83. doi: 10.1016/j.cor.2014.10.018 DOI: https://doi.org/10.1016/j.cor.2014.10.018
  38. Renkli, Ç., & Duran, S. (2015). Pre-Positioning Disaster Response Facilities and Relief Items. Human and Ecological Risk Assessment: An International Journal, 21 (5), 1169-1185. doi: 10.1080/10807039.2014.957940 DOI: https://doi.org/10.1080/10807039.2014.957940
  39. Rivera, J. C., Afsar, H. M., & Prins, C. (2015). A multistart iterated local search for the multitrip cumulative capacitated vehicle routing problem. Computational Optimization and Applications, 61 (1), 159-187. doi: 10.1007/s10589-014-9713-5 DOI: https://doi.org/10.1007/s10589-014-9713-5
  40. Robledo, S., Osorio, G. A., & López, C. (2014). Networking en pequeña empresa: una revisión bibliográfica utilizando la teoría de grafos. Revista Vínculos, 11 (2), 6-16.
  41. Rodríguez-Espíndola, O., & Gaytán, J. (2015). Scenario-based preparedness plan for floods. Natural Hazards, 76 (2), 1241-1262. doi: 10.1007/s11069-014-1544-2 DOI: https://doi.org/10.1007/s11069-014-1544-2
  42. Rottkemper, B., Fischer, K., Blecken, A., & Danne, C. (2011). Inventory relocation for overlapping disaster settings in humanitarian operations. OR Spectrum, 33 (3), 721-749. doi: 10.1007/s00291-011-0260-5 DOI: https://doi.org/10.1007/s00291-011-0260-5
  43. Salman, F. S., & Yücel, E. (2015). Emergency facility location under random network damage: Insights from the Istanbul case. Computers & Operations Research, 62, 266-281. doi: 10.1016/j.cor.2014.07.015 DOI: https://doi.org/10.1016/j.cor.2014.07.015
  44. Scholten, K., Scott, P. S., & Fynes, B. (2014). Mitigation processes – antecedents for building supply chain resilience. Supply Chain Management: An International Journal, 19 (2), 211-228. doi: 10.1108/SCM-06-2013-0191 DOI: https://doi.org/10.1108/SCM-06-2013-0191
  45. Sharif, M. T., & Salari, M. (2015). A GRASP algorithm for a humanitarian relief transportation problem. Engineering Applications of Artificial Intelligence, 41, 259-269. doi: 10.1016/j.engappai.2015.02.013 DOI: https://doi.org/10.1016/j.engappai.2015.02.013
  46. Tuzkaya, U. R., Yilmazer, K. B., & Tuzkaya, G. (2015). An Integrated Methodology for the Emergency Logistics Centers Location Selection Problem and its Application for the Turkey Case. Homeland Security & Emergency Management, 12 (1), 121-144. doi: 10.1515/jhsem-2013-0107 DOI: https://doi.org/10.1515/jhsem-2013-0107
  47. Tzeng, G. H., Cheng, H. J., & Huang, T. D. (2007). Multi-objective optimal planning for designing relief delivery systems. Transportation Research Part E-Logistics and Transportation Review, 43 (6), 673-686. doi: 10.1016/j.tre.2006.10.012 DOI: https://doi.org/10.1016/j.tre.2006.10.012
  48. Ülkü, M. A., Bell, K. M., & Wilson, S. G. (2015). Modeling the impact of donor behavior on humanitarian aid operations. Annals of Operations Research, 230 (1), 153-168. doi: 10.1007/s10479-014-1623-5 DOI: https://doi.org/10.1007/s10479-014-1623-5
  49. Van Wassenhove, L. N. (2006). Humanitarian aid logistics: supply chain management in high gear. Journal of the Operational Research Society, 57 (5), 475–489. doi: 10.1057/palgrave.jors.2602125 DOI: https://doi.org/10.1057/palgrave.jors.2602125
  50. Vargas-Florez, J., Lauras, M., Okongwu, U., & Dupont, L. (2015). A decision support system for robust humanitarian facility location. Engineering Applications of Artificial Intelligence, 46 Part B, 326-335. doi: 10.1016/j.engappai.2015.06.020 DOI: https://doi.org/10.1016/j.engappai.2015.06.020
  51. Verma, A., & Gaukler, G. M. (2015). Pre-positioning disaster response facilities at safe locations: An evaluation of deterministic and stochastic modeling approaches. Computers & Operations Research, 62, 197-209. doi: 10.1016/j.cor.2014.10.006 DOI: https://doi.org/10.1016/j.cor.2014.10.006
  52. Yang, X., & Zhu, S. (2016). Solution to the Multidepot Inventory Slack-Routing Problem at the Planning Stage. Journal of Computing in Civil Engineering, 30 (1). doi: 10.1061/(ASCE)CP.1943-5487.0000449 DOI: https://doi.org/10.1061/(ASCE)CP.1943-5487.0000449
  53. Yi, W., & Özdamar, L. (2007). A dynamic logistics coordination model for evacuation and support in disaster response activities. European Journal of Operational Research, 179 (3), 1177-1193. doi: 10.1016/j.ejor.2005.03.077 DOI: https://doi.org/10.1016/j.ejor.2005.03.077
  54. Zhen, L., Wang, K., & Liu, H. C. (2015). Disaster Relief Facility Network Design in Metropolises. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45 (5), 751-761. doi: 10.1109/TSMC.2014.2364550 DOI: https://doi.org/10.1109/TSMC.2014.2364550

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 3 4 > >> 

También puede {advancedSearchLink} para este artículo.