Pitchfork and Hopf bifurcations in an extended Lorenz system
Abstract
An analytical classification in a three-dimensional parameter space is presented to describe the dynamics for an extended Lorenz system of the Li-Ou type, conditions are given to find supercritical and degenerate Hopf bifurcations and a pitchfork bifurcation. Finally, the theoretical results are compared with numerical simulations and bifurcation diagrams.
Keywords
Lorenz-type systems, bifurcations, chaos
References
- Li, You and Zhao, Ming and Geng, Fengjie, “Dynamical Analysis and Simulation of a New Lorenz-Like Chaotic System ”, Mathematical Problems in Engineering, vol. 2021.
- I. ElAgib, J. Csikai, J. Jordanova y L. OlaAh, “Leakage neutron spectra from spherical samples with a Pu-Be source”, Applied Radiation and Isotopes, vol. 51, pp. 329-333, 1999.
- J. D. Daron y D. A. Stainforth. “On quantifying the climate of the nonautonomous Lorenz-63 model”, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 25, 2015.
- A. Atencia y I. Zawadzki. “Analogs on the Lorenz Attractor and Ensemble Spread”, Monthly Weather Review, vol. 145 , 2017.
- G. J. Valcárcel, E. Roldán y F. Prati. “Semiclassical theory of amplification and lasing ”, Revista mexicana de física E, Sociedad Mexicana de Física, vol. 52, 2006.
- K. López, S. Casanova, C. D. Acosta y H. A. Granada. “Dynamical analysis of a continuous stirred-tank reactor with the formation of bio lms for wastewater treatment ”, Mathematical Problems in Engineering, pp. 1–10. 2015.
- G. J. Valcárcel, E. Roldán y R. Vilaseca. “Lorenz character of the Doppler-broadened far-infrared laser”, JOSA B, Optical Society of America, vol. 12, 1991.
- J. Ohtsubo. “Semiconductor lasers: stability, instability and chaos”, Springer, 2012.
- S. Ayadi y O. Haeberlé . “The Lorenz model for singlemode homogeneously broadened laser: analytical determination of the unpredictable zone”, Versita, Open Physics, vol. 12, 2014.
- I. S. Aranson, A. Pikovsky, N. F. Rulkov y L. S. Tsimring. “Advances in Dynamics, Patterns, Cognition: Challenges in Complexity”, Springer, 2017.
- E. Barbará, E. Alba, O. Rodríguez y others . “Modulación de señales electrocardiográficas mediante algoritmos caóticos”, Ingeniería e Investigación; Universidad Nacional de Colombia, vol. 32, 2012.
- I. Pan y S. Das. “Evolving chaos: Identifying new attractors of the generalised Lorenz family”, Applied Mathematical Modelling, Elsevier, vol. 57, 2018.
- T. Li y J. Yorke. “Period Three Implies Chaos”, American Mathematical Monthly, vol. 82(10),pp. 985–922. 1975
- H. A. Granada. “Nonlinear dynamics of a demographic, economic and environmental complex system for sustainable development”, Ph.D dissertation. National University. 2014.
- L. Perko. “Differential Equations and Dynamical Systems”, 2nd Ed., Springer, USA. 2001.
- S. Norman. “Control Systems Engineering ”, 4th Ed., John Wiley & Sons, Inc. 2004.
- P. E. Calderon y E. Muñoz. “Tratamiento analítico de la bifurcación De hopf en una extensión del sistema de lü ”, Revista de Matemática Teoría y Aplicaciones, vol. 25(1), pp. 29–40, 2018.
- X. Li y Q. Ou. “Dynamical properties and simulation of a new Lorenz-like chaotic system”, Nonlinear Dynamical, vol. 65(3), pp. 255–270, 2011.
- Y. A. Kuznetsov. “Bifurcation Phenomena Lecture 2: One-parameter bifurcations of planar ODEs”, http://www.staff.science.uu.nl/ kouzn101/cm/L2.pdf
Downloads
Download data is not yet available.