Skip to main navigation menu Skip to main content Skip to site footer

Pitchfork and Hopf bifurcations in an extended Lorenz system

Abstract

An analytical classification in a three-dimensional parameter space is presented to describe the dynamics for an extended Lorenz system of the Li-Ou type, conditions are given to find supercritical and degenerate Hopf bifurcations and a pitchfork bifurcation. Finally, the theoretical results are compared with numerical simulations and bifurcation diagrams.

Keywords

Lorenz-type systems, bifurcations, chaos

PDF (Español)

References

  1. Li, You and Zhao, Ming and Geng, Fengjie, “Dynamical Analysis and Simulation of a New Lorenz-Like Chaotic System ”, Mathematical Problems in Engineering, vol. 2021.
  2. I. ElAgib, J. Csikai, J. Jordanova y L. OlaAh, “Leakage neutron spectra from spherical samples with a Pu-Be source”, Applied Radiation and Isotopes, vol. 51, pp. 329-333, 1999.
  3. J. D. Daron y D. A. Stainforth. “On quantifying the climate of the nonautonomous Lorenz-63 model”, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 25, 2015.
  4. A. Atencia y I. Zawadzki. “Analogs on the Lorenz Attractor and Ensemble Spread”, Monthly Weather Review, vol. 145 , 2017.
  5. G. J. Valcárcel, E. Roldán y F. Prati. “Semiclassical theory of amplification and lasing ”, Revista mexicana de física E, Sociedad Mexicana de Física, vol. 52, 2006.
  6. K. López, S. Casanova, C. D. Acosta y H. A. Granada. “Dynamical analysis of a continuous stirred-tank reactor with the formation of bio lms for wastewater treatment ”, Mathematical Problems in Engineering, pp. 1–10. 2015.
  7. G. J. Valcárcel, E. Roldán y R. Vilaseca. “Lorenz character of the Doppler-broadened far-infrared laser”, JOSA B, Optical Society of America, vol. 12, 1991.
  8. J. Ohtsubo. “Semiconductor lasers: stability, instability and chaos”, Springer, 2012.
  9. S. Ayadi y O. Haeberlé . “The Lorenz model for singlemode homogeneously broadened laser: analytical determination of the unpredictable zone”, Versita, Open Physics, vol. 12, 2014.
  10. I. S. Aranson, A. Pikovsky, N. F. Rulkov y L. S. Tsimring. “Advances in Dynamics, Patterns, Cognition: Challenges in Complexity”, Springer, 2017.
  11. E. Barbará, E. Alba, O. Rodríguez y others . “Modulación de señales electrocardiográficas mediante algoritmos caóticos”, Ingeniería e Investigación; Universidad Nacional de Colombia, vol. 32, 2012.
  12. I. Pan y S. Das. “Evolving chaos: Identifying new attractors of the generalised Lorenz family”, Applied Mathematical Modelling, Elsevier, vol. 57, 2018.
  13. T. Li y J. Yorke. “Period Three Implies Chaos”, American Mathematical Monthly, vol. 82(10),pp. 985–922. 1975
  14. H. A. Granada. “Nonlinear dynamics of a demographic, economic and environmental complex system for sustainable development”, Ph.D dissertation. National University. 2014.
  15. L. Perko. “Differential Equations and Dynamical Systems”, 2nd Ed., Springer, USA. 2001.
  16. S. Norman. “Control Systems Engineering ”, 4th Ed., John Wiley & Sons, Inc. 2004.
  17. P. E. Calderon y E. Muñoz. “Tratamiento analítico de la bifurcación De hopf en una extensión del sistema de lü ”, Revista de Matemática Teoría y Aplicaciones, vol. 25(1), pp. 29–40, 2018.
  18. X. Li y Q. Ou. “Dynamical properties and simulation of a new Lorenz-like chaotic system”, Nonlinear Dynamical, vol. 65(3), pp. 255–270, 2011.
  19. Y. A. Kuznetsov. “Bifurcation Phenomena Lecture 2: One-parameter bifurcations of planar ODEs”, http://www.staff.science.uu.nl/ kouzn101/cm/L2.pdf

Downloads

Download data is not yet available.

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.