Skip to main navigation menu Skip to main content Skip to site footer

Non-local ring embedded in a direct product of fields

Abstract

In this paper we study the immersion of a non-local commutative ring with unity R into a direct product
of fields. In the product of quotient fields defined by the maximal ideals of R. The ring homomorphism
ϕ from R into direct product of quotient fields is defined by the universal property of the direct product.
Let Kerϕ be the kernel of ϕ, then Kerϕ = J (R), with J (R) is the Jacobson radical of the ring R. If
J (R) = {0}, the ring homomorphism is injective in the infinite case and in the finite case, we will proof ϕ
is an isomorphism. In addition, we consider R a total ring of fractions with finite number of maximal ideals
and will show that the ring homomorphism from R into a direct product of localizations is injective. Even
more, if R have the form Zn, with n ̸= 0, or R is a finite dimensional K−algebra with field K, we have that
this ring homomorphism is an isomorphism.

Keywords

Total ring of fractions, field of fractions, finite dimensional K−algebra, localization, direct product of rings, Jacobson radical.

PDF (Español)

Author Biography

Claudia Granados Pinzón

Doctora en Matemáticas Universidad de Valladolid (España)

C.C. 63514588

Fecha de Nacimiento: 3 de septiembre de 1976


References

  1. M.F. Atiyah e I.G. Macdonald, “Anillos e ideales”, Introducción al álgebra conmutativa. Editorial Reverté S. A.: Barcelona, 1980, pp 1-18.
  2. P. M. Cohn, “On the Embedding of Rings in Skew Fields”, Proceedings of the London Mathematical Society, vol. s3, no. 11, pp 511- 530, 1961, https://doi.org/10.1112/plms/s3-11.1.511
  3. C. Granados-Pinzón, “Álgebras finitas sobre un cuerpo. La recta proyectiva”, (Tesis doctoral),
  4. Departamento de Álgebra, análisis matemático, geometría y topología, Universidad de Valladolid, Valladolid, 2015.
  5. A, Beshenov, Localización de Z/nZ. [Online] México: Centro de Investigación en
  6. Matemáticas (CIMAT), 2018. Disponible en: https://cadadr.org/teaching/san-salvador/
  7. -algebra/localizacion-de-znz.pdf
  8. C. Granados-Pinzón y W. OlayaLeón, “K-álgebras finitas conmutativas con unidad”, Ingeniería y Ciencia, vol. 12, no. 24, pp. 31-49, 2016. https://doi.org/10.17230/ingciencia.12.24.2
  9. C. Granados-Pinzón C. y W. Olaya-León, “Anillos totales de fracciones y anillos de Hermite”, Ciencia en Desarrollo, vol. 11, no. 2, pp. 131- 140, 2020. https://doi.org/10.19053/01217488. v11.n2.2020.10223
  10. C. Granados-Pinzón, W. Olaya-León y S.Pinzón-Durán, “Estimación del cardinal del espectro maximal de un producto infinito decuerpos”, Ciencia en Desarrollo, vol. 9, no.2, pp. 83-93, 2018. https://doi.org/10.19053/
  11. v9.n2.2018.5946
  12. J. L. Fisher, “Embedding Free Algebras in Skew Fields”, Proceedings of the American Mathematical Society, vol. 30, no. 3, pp. 453-458, 1971. https://doi.org/10.2307/2037715
  13. A. Malcev, “On the immersion of an algebraic ring into a field”, Mathematische Annalen, vol. 113, pp. 686-691, 1937. https://doi.org/10.1007/BF01571659

Downloads

Download data is not yet available.

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.