Skip to main navigation menu Skip to main content Skip to site footer

Electrochemical Treatment of Water Polluted with β-Lactam Antibiotics.

Abstract

Oxacillin (OXA), cloxacillin (CLX) and Dicloxacillin (DCX) are β-lactam antibiotics, used to treat infections caused by gram-positive and gram-negative microorganisms, which can reach aquatic systems due to improper disposal or deficient water system treatments, thus representing a risk to the environment. With this work, the degradation of these -lactam antibiotics was investigated by anodic oxidation using a DSA anode Ti/IrO2. An experimental design with variables assessing current density, supporting electrolyte, and the concentration of substance, allowed to evaluate the most favorable conditions for the degradation of the β-lactams tested. The best eciencies in terms of pollutant and antibiotic activity removals, were obtained at high current level (121 mA) and average concentration of NaCl (0.225 mol L

Keywords

Isoxazolilpenicilinas, oxidación anódica, actividad antimicrobiana, ánodo tipo DSA. (Isoxazolyl Penicillins, Anodic Oxidation, Antimicrobial Activity, Anode Type-DSA.)

PDF (Español)

References

  1. M. R. Periago, “La resistencia a los antimicrobianos: un factor de riesgo para las enfermedades infecciosas”, Revista Panamericana de
  2. Salud Pública, vol. 30, pp. 507-509, 2011. DOI: https://doi.org/10.1590/S1020-49892011001200001
  3. A. Junza, N. Dorival-García, A. Zafra-Gómez, D. Barrón, O. Ballesteros, J. Barbosa et al., “Multiclass method for the determination of quinolones and -lactams, in raw cow milk using dispersive liquid–liquid microextraction and ultra high performance liquid chromatography–tandem mass spectrometry”, Journal of Chromatography A, vol. 1356, pp. 10-22, 2014. DOI: https://doi.org/10.1016/j.chroma.2014.06.034
  4. F. García, “Resistencia bacteriana a antibióticos”, Acta Médica Costarricense, vol. 43, pp. 101-102, 2001. DOI: https://doi.org/10.51481/amc.v43i3.62
  5. M. A. Guzmán M., J. Salinas L., P. Toche P., and A. Afani S, “Alergia a b-lactámicos”, Revista chilena de infectología, vol. 21, pp. 285-298, DOI: https://doi.org/10.4067/S0716-10182004000400002
  6. P. S. M. Dunlop, M. Ciavola, L. Rizzo, D. A. McDowell, and J. A. Byrne, “Eect of photocatalysis on the transfer of antibiotic resistance
  7. genes in urban wastewater”. Catalysis Today.
  8. OMS, Resistencia a los antimicrobianos, 2013.
  9. Y. Ishii, C. Ueda, Y. Kouyama, K. Tateda, and K. Yamaguchi, “Evaluation of antimicrobial susceptibility for -lactams against clinical isolates from 51 medical centers in Japan (2008)”, Diagnostic Microbiology and Infectious Disease, vol. 69, pp. 443-448, 2011. DOI: https://doi.org/10.1016/j.diagmicrobio.2010.10.033
  10. J. M. Cha, S. Yang, and K. H. Carlson, “Trace determination of -lactam antibiotics in surface water and urban wastewater using liquid
  11. chromatography combined with electrospray tandem mass spectrometry”, Journal of Chromatography A, vol. 1115, pp. 46-57, 2006. DOI: https://doi.org/10.1016/j.chroma.2006.02.086
  12. M. E. Epstein, M. Amodio-Groton, and N. S. Sadick, “Antimicrobial agents for the dermatologist. I. -Lactam antibiotics and related compounds”, Journal of the American Academy of Dermatology, vol. 37, pp. 149-165, 1997. DOI: https://doi.org/10.1016/S0190-9622(97)80118-1
  13. Today’s Drugs: Penicillins And Cephalosporins, Today’s Drugs: Penicillins And Cephalosporins, The British Medical Journal, vol. 2,
  14. no. 5604, pp. 542-545, 1968. Retrieved from http://www.jstor.org/stable/20392812
  15. M. A. Oturan and E. Brillas, “Electrochemical Advanced Oxidation Processes (EAOPs) for Environmental Applications”, Portugaliae Electrochimica Acta, vol. 25, pp. 1-18, 2007. DOI: https://doi.org/10.4152/pea.200701001
  16. M. Panizza, A. Barbucci, R. Ricotti, and G. Cerisola, “Electrochemical degradation of methylene blue”, Separation and Purification Technology, vol. 54, pp. 382-387, 2007. DOI: https://doi.org/10.1016/j.seppur.2006.10.010
  17. M. Panizza and C. A. Martinez-Huitle, “Role of electrode materials for the anodic oxidation of a real landfill leachate – Comparison between Ti–Ru–Sn ternary oxide, PbO2 and boron-doped diamond anode”, Chemosphere, vol. 90, pp. 1455-1460, 2013. DOI: https://doi.org/10.1016/j.chemosphere.2012.09.006
  18. R. E. Palma-Goyes, F. L. Guzmán-Duque, G. Peñuela, I. González, J. L. Nava, and R. A. Torres-Palma, “Electrochemical degradation of crystal violet with BDD electrodes: Effect of
  19. electrochemical parameters and identification of organic by-products”, Chemosphere, vol. 81, pp. 26-32, 2010. DOI: https://doi.org/10.1016/j.chemosphere.2010.07.020
  20. R. A. Torres, W. Torres, P. Peringer, and C. Pulgarin, “Electrochemical degradation of psubstituted phenols of industrial interest on Pt electrodes: Attempt of a structure–reactivity relationship assessment”, Chemosphere, vol. 50, pp. 97-104, 2003. DOI: https://doi.org/10.1016/S0045-6535(02)00487-3
  21. R. A. Torres, V. Sarria, W. Torres, P. Peringer, and C. Pulgarin, “Electrochemical treatment of industrial wastewater containing 5-
  22. amino-6-methyl-2-benzimidazolone: toward an electrochemical–biological coupling”, Water Research, vol. 37, pp. 3118-3124, 2003. DOI: https://doi.org/10.1016/S0043-1354(03)00179-9
  23. U. S. Pharmacopeial, “USP 35/NF 30 The United States Pharmacopeia”, p. 4141, 2012.
  24. D. C. Montgomery and G. C. Runger, “Applied Statics and Probability for Engineer. Design and Analysis of Experiments”, 3 ed., John Willey & Sons, INC., 2003.
  25. R.A. Torres, R. Mosteo, C. Pétrier, C. Pulgarín. “Experimental design approach to the optimization of ultrasonic degradation of alachlor and enhancement of treated water biodegradability”.
  26. Ultrasonics Sonochemistry, vol. 16, no. 3, 425-430, 2009. DOI: https://doi.org/10.1016/j.ultsonch.2008.08.004
  27. T. González, J. R. Domínguez, P. Palo, J. Sánchez-Martín, and E. M. Cuerda-Correa, “Development and optimization of the BDDelectrochemical oxidation of the antibiotic trimethoprim in aqueous solution”, Desalination, vol. 280, pp. 197-202, 2011. DOI: https://doi.org/10.1016/j.desal.2011.07.012
  28. P. D. Philip C. Singer and P. D. David A. Reckhow, “Chemical Oxidation”, in Water quality and treatment: a handbook of community water supplies, McGraw-Hill, Fifth Ed., p. 1248, 1999.
  29. M. Deborde and U. von Gunten, “Reactions of chlorine with inorganic and organic compounds during water treatment–Kinetics and
  30. mechanisms: A critical review”, Water Research, vol. 42, pp. 13-51, 2008. DOI: https://doi.org/10.1016/j.watres.2007.07.025
  31. C. Reyes, J. Fernández, J. Freer, M. A. Mondaca, C. Zaror, S. Malato, et al., “Degradation and inactivation of tetracycline by TiO2 photocatalysis”, Journal of Photochemistry and Photobiology A: Chemistry, vol. 184, pp. 141-146, 2006. DOI: https://doi.org/10.1016/j.jphotochem.2006.04.007

Downloads

Download data is not yet available.

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.