Skip to main navigation menu Skip to main content Skip to site footer

Synthesis And Structural Characterization of the PR3-XEUXBA5CU8O18 System

Abstract

This research describes the synthesis and characterization of the Pr3-XEuXBa5Cu8O18-δ system with modification levels (x = 0, 0.5, 1, 1.5, 2 and 2.5). The synthesis process was achieved by solid state reaction (SSR). Precursor oxides of Pr6O11, Eu2O3, BaO and CuO were used with purities up to 99.999%. Calcination temperatures were handled at 850 ° C, sintering at 900 ° C and oxygenation at 910 ° C. The structural characterization was determined by X-ray diffraction (XRD). A structural analysis was carried out with Rietveld refinement, where the coexistence of two phases TR358 and TR123 was evidenced. The net parameters were obtained and a perovskite-orthorhombic crystal structure with spatial group Pmmm (47) was achieved. It was concluded that the increase of the X modification level with Eu in the Pr3-XEuXBa5Cu8O18-d system has a large impact on the percentage composition of the phases and structural parameters. The increase or decrease of the value of the net parameters in structure 358 and 123 is affected by the mixture of oxidation states of Pr with those of Eu, causing the cell size to change.

Keywords

Characterization, calcination, perovskite, Rietveld refinement, Sintering, Solid state reaction

PDF (Español)

Author Biography

Julian Andres Parra Borda

Unidad de investigacion Universidad Santo Tomas seccional Tunja 

Joven Investigador 


References

  1. B. Shen et al., “Optimization study on the magnetic field of superconducting Halbach Array magnet,” Phys. C Supercond. its Appl., vol. 538, pp. 46–51, Jul. 2017. DOI: https://doi.org/10.1016/j.physc.2017.05.009
  2. B. M. O. Santos, F. Sass, and R. de Andrade, “Analysis of rotating field and induced current density in synchronous-hysteresis superconducting machine,” in 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE), 2018, pp. 1–5. DOI: https://doi.org/10.1109/SBSE.2018.8395565
  3. Z. Huang, H. S. Ruiz, and T. A. Coombs, “Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor,” Phys. C Supercond. its Appl., B. Shen et al., “Optimization study on the magnetic field of superconducting Halbach Array magnet,” Phys. C Supercond. its Appl., vol. 538, pp. 46–51, Jul. 2017. DOI: https://doi.org/10.1016/j.physc.2017.01.004
  4. J. H. Schultz and G. Sujan, “Superconducting Wires and Cables: High-Field Applications,” in Reference Module in Materials Science and Materials Engineering, 2016. DOI: https://doi.org/10.1016/B978-0-12-803581-8.01916-0
  5. L. Cardani et al., “New application of superconductors: High sensitivity cryogenic light detectors,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 845, pp. 338–341, Feb. 2017. DOI: https://doi.org/10.1016/j.nima.2016.04.011
  6. F. N. Werfel et al., “Bulk Superconductors in Mobile Application,” Phys. Procedia, vol. 36, pp. 948–952, 2012. DOI: https://doi.org/10.1016/j.phpro.2012.06.235
  7. P. Udomsamuthirun, T. Kruaehong, T. Nilkamjon, and S. Ratreng, “The New Superconductors of YBaCuO Materials,” J. Supercond. Nov. Magn., vol. 23, no. 7, pp. 1377–1380, Oct. 2010. DOI: https://doi.org/10.1007/s10948-010-0786-9
  8. S. Gholipour, V. Daadmehr, A. T. Rezakhani, H. Khosroabadi, F. S. Tehrani, and R. H. Akbarnejad, “Y358 against Y123 structural phase in a Y-based superconductor,” Oct. 2011.
  9. J. A. Parra-Borda, F. G. Rojas-Cruz, A. F. Cruz-Pacheco, S. Segura-Peña, and C. A. P. Vargas, “Structural and magnetic analysis of the Pr 1.5 Eu 1.5 Ba 5 Cu 8 O 18 system,” J. Phys. Conf. Ser., vol. 935, no. 1, p. 12005, Dec. 2017. DOI: https://doi.org/10.1088/1742-6596/935/1/012005
  10. S. Bolat and S. Kutuk, “Fabrication of the New Y3Ba5Cu8O y Superconductor Using Melt–Powder–Melt–Growth Method and Comparison with YBa2Cu3O7−x,” J. Supercond. Nov. Magn., vol. 25, no. 4, pp. 731–738, May 2012. DOI: https://doi.org/10.1007/s10948-011-1332-0
  11. A. Aliabadi, Y. A. Farshchi, and M. Akhavan, “A new Y-based {HTSC} with Tc above 100 K,” Phys. C Supercond. its Appl., vol. 469, no. 22, pp. 2012–2014, 2009. DOI: https://doi.org/10.1016/j.physc.2009.09.003
  12. A. P. Garcés, Mariño, “Películas gruesas superconductoras de YBCO para conductores recubiertos.,” MOMENTO, vol. 0, no. 31, pp. 45–54, Jul. 2005.
  13. K. D.-B. S. López-Romero, S. J. Castillo-Mendoza, J. Chávez-Ramírez, “Síntesis y Caracterizacion Optica, Electrica y Estructural de Películas Delgadas de CS2 Depositadas por el Metodo PECVD,” Matéria, vol. 8, pp. 341–349, 2003.
  14. Juan Feijóo1* ; Ana María Osorio2* ; Ángel Bustamante1 ; Luis de los Santos Valladares1 ; Amado Castro2 ; María H. Carhuancho2 ; Rosa Aguirre2, “Caracterización del cerámico superconductor CaLaBaCu3O7-δ obtenido por el método Sol-Gel,” Rev. la Soc. Química del Perú, vol. 73, no. 4, pp. 208–214, 2007.
  15. Molecular Diversity Preservation International. and Multidisciplinary Digital Publishing Institute., Materials. Molecular Diversity Preservation International, 2008.
  16. “Difractometría de rayos X.” [Online]. Available: http://ciencias.bogota.unal.edu.co/departamentos/fisica/servicios-de-extension/laboratorios-y-taller/difractometria-de-rayos-x/. [Accessed: 09-Jul-2018].
  17. S. Pavan Kumar Naik, M. Santosh, and P. M. Swarup Raju, “Structural and Thermal Validations of Y3Ba5Cu8O18 Composites Synthesized via Citrate Sol-Gel Spontaneous Combustion Method,” J. Supercond. Nov. Magn., vol. 31, no. 5, pp. 1279–1286, May 2018. DOI: https://doi.org/10.1007/s10948-017-4306-z
  18. A. Tavana and M. Akhavan, “How Tc can go above 100 K in the YBCO family,” Eur. Phys. J. B, vol. 73, no. 1, pp. 79–83, Jan. 2010. DOI: https://doi.org/10.1140/epjb/e2009-00396-7
  19. E. Y. Wong, “Configuration Interaction of the Pr 3+ Ion,” J. Chem. Phys., vol. 38, no. 4, pp. 976–978, Feb. 1963. DOI: https://doi.org/10.1063/1.1733794
  20. H. E. Hoefdraad, “The charge-transfer absorption band of Eu3+ in oxides,” J. Solid State Chem., vol. 15, no. 2, pp. 175–177, Oct. 1975. DOI: https://doi.org/10.1016/0022-4596(75)90242-X
  21. P. Boutinaud, E. Tomasella, A. Ennajdaoui, and R. Mahiou, “Structural characterization and luminescent properties of CaTiO3:Pr3+ thin films deposited by radio frequency sputtering,” Thin Solid Films, vol. 515, no. 4, pp. 2316–2321, Dec. 2006. DOI: https://doi.org/10.1016/j.tsf.2006.03.037
  22. I. S. García et al., “Síntesis y propiedades estructurales del sistema superconductor La1,5+xBa1,5+x −yCayCu3Oz. (Synthesis and Structural Properties of La1,5+xBa1,5+x-yCayCu3Oz Superconductor System.),” Cienc. EN Desarro., vol. 4, no. 2, pp. 27–32, Jun. 2014.
  23. S. SUJINNAPRAM, P. UDOMSAMUTHIRUN, T. KRUAEHONG, T. NILKAMJON, and S. RATRENG, “XRD spectra of new YBaCuO superconductors,” Bull. Mater. Sci., vol. 34, no. 5, pp. 1053–1057, Aug. 2011. DOI: https://doi.org/10.1007/s12034-011-0130-4
  24. S. P. K. Naik and M. Santosh, “Superconducting Performance, Structure, Microstructure, and Trapped Field of Top-Seeded Melt-Processed Bulk Y3Ba5Cu8Ox,” J. Supercond. Nov. Magn., pp. 1–7, Feb. 2018. DOI: https://doi.org/10.1007/s10948-018-4609-8
  25. E. Sarantopoulou, Z. Kollia, and A. . Cefalas, “YF3:Nd3+, Pr3+, Gd3+ wide band gap crystals as optical materials for 157-nm photolithography,” Opt. Mater. (Amst)., vol. 18, no. 1, pp. 23–26, Oct. 2001. DOI: https://doi.org/10.1016/S0925-3467(01)00124-0
  26. G. Hai, Q. Yanmin, X. Zhang, Y. Xiao, and C. Yan, “Photoluminescent properties of Sr 2 SiO 4 :Eu 3+ and Sr 2 SiO 4 :Eu 2+ phosphors prepared by solid-state reaction method,” J. Rare Earths, vol. 27, no. 2, pp. 323–326, 2009. DOI: https://doi.org/10.1016/S1002-0721(08)60243-4
  27. F. M. Jaime Gallego1,2, Germán Sierra3, Carlos Daza4, Rafael Molina4, Joël Barrault2, Catherine Batiot-Dupeyrat2, “Reformado de metano en seco utilizando perovskitas La1-XAXNiO3 y LaNi1-XBXO3 (A: Ce ó Pr y B: Co ó Mg) como precursores del catalizador,” Rev. Fac. Ing. Univ. Antioquia, no. 52, pp. 9–18, 2010.
  28. A. E. Y. Shiohara, “Crystal growth of bulk high-Tc superconducting oxide materials - PDF Free Download,” 0927-796X/97/$32.00q1997 Elsevier Sci. S.A. All rights Reserv. Sci. Eng., vol. 19, pp. 1–86, 1997. DOI: https://doi.org/10.1016/S0927-796X(96)00198-2
  29. A. M. Morales Rivera, J. A. Gómez Cuaspud, C. A. Parra Várgas, and M. H. Brijaldo Ramirez, “Synthesis and Characterization of LaBa2Cu3O7−δ System by Combustion Technique,” J. Supercond. Nov. Magn., vol. 29, no. 5, pp. 1163–1171, May 2016. DOI: https://doi.org/10.1007/s10948-015-3311-3

Downloads

Download data is not yet available.

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.