Yield and yield components of tomato grafted plants in the high Andean region of Colombia

Main Article Content


Jamer Alexis Ramírez-Jiménez https://orcid.org/0000-0001-7768-1631
Carlos Felipe Barrera-Sánchez https://orcid.org/0000-0002-5015-2956
Oscar de Jesús Córdoba-Gaona https://orcid.org/0000-0003-2642-4146


Grafting as a technique is gaining attention, and the production and demand for grafted vegetable plants have increased worldwide, especially for greenhouse cultivation. This study aimed to evaluate the potential of different scion × rootstock combinations or improving the yield of the tomato crop under greenhouse conditions. For this purpose, a scion of tomato cv. Libertador was grafted on two commercial tomato rootstock (‘Olimpo’ and ‘Armada’) and cultivated in a greenhouse in a randomized complete block experiment design, with four scion-rootstock combinations: vigor and resistance rootstocks, self-grafting and non-grafted plants. The yield and yield components were evaluated (number and weight of the fruits of extra, commercial, and non-commercial quality, weight per cluster, and weight per fruit).  Although vigor rootstocks produce less fresh fruit in the first harvests, from the seventh harvest onwards, the vigor rootstocks outperformed the other treatments in the accumulated yield by producing 37, 22 and 22% more yield, and 60, 30 and 40% higher number of fruits of extra quality in the resistance rootstock, self-grafted, and non-grafted plants. The fruits plants of vigor rootstock, self-grafted and non-grafted above 150 g, tend to have a cylindrical shape; however, fruits in the resistance rootstock tend to be flattened. The use of a vigor rootstock increased the yield of cv. Libertador, regarding the rootstock with resistance characteristics and controls, self-grafted, and non-grafted plants.


Article Details


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The copyright of the articles and illustrations are the property of the Revista Colombiana de Ciencias Hortícolas. The editors authorize the use of the contents under the Creative Commons license Attribution-Noncommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). The correct citation of the content must explicitly register the name of the journal, name (s) of the author (s), year, title of the article, volume, number, page of the article and DOI. Written permission is required from publishers to publish more than a short summary of the text or figures.


Aloni, B., R. Cohen, L. Karni, L.H. Aktas, and M. Edelstein. 2010. Hormonal signaling in rootstock–scion interactions. Sci. Hortic. 127, 119-126. Doi: 10.1016/j.scienta.2010.09.003

Bhatt, R.M., K.K. Upreti, M.H. Divya, S. Bhat, C.B. Pavithra, and A.T. Sadashiva. 2015. Interspecific grafting to enhance physiological resilience to flooding stress in tomato (Solanum lycopersicum L.). Sci. Hortic. 182, 8-17. Doi: 10.1016/j.scienta.2014.10.043

Djidonou, D., A.H. Simonne, K.E. Koch, J.K. Brecht, and X. Zhao. 2016. Nutritional quality of field-grown tomato fruit as affected by grafting with interspecific hybrid rootstocks. HortScience 51, 1618-1624. Doi: 10.21273/HORTSCI11275-16

Feller, C., H. Bleiholder, M. Hess, U. Meier, T. Van Den Boom, D.L. Peter, L. Buhr, H. Hack, R. Klose, R. Stauss, E. Weber, and M. Philipp. 1997. Compendium of growth stage identification keys for mono and dicotyledonous plants extended BBCH scale. 2nd ed. In: https://www.hortiadvice.dk/upl/website/bbch-skala/scaleBBCH.pdf; consulted: March, 2020.

Fullana-Pericàs, M., J. Ponce, M.À. Conesa, A. Juan, M. Ribas-Carbó, and J. Galmés. 2018. Changes in yield, growth and photosynthesis in a drought-adapted Mediterranean tomato landrace (Solanum lycopersicum ‘Ramellet’) when grafted onto commercial rootstocks and Solanum pimpinellifolium. Sci. Hortic. 233, 70-77. Doi: 10.1016/j.scienta.2018.01.045

Gaion, L.A., L.T. Braz, and R.F. Carvalho. 2018. Grafting in vegetable crops: A great technique for agriculture. Int. J. Veg. Sci. 24, 85-102. Doi: 10.1080/19315260.2017.1357062

Geboloğlu, N., E. Yilmaz, P. Cakm. M. Aydin, and Y. Kasap. 2011. Determining of the yield, quality and nutrient content of tomatoes grafted on different rootstocks in soilless culture. Sci. Res. Essays 6, 2147-2153. Doi: 10.5897/SRE10.1079

Hossain, M.G., M.A. Ali, R.A. Ripa, S. Ayrin, and S. Mahmood. 2019. Influence of rootstocks on yield and quality of summer tomato cv. ‘BARI Tomato-4’. Earth Syst. Environ. 3, 289-300. Doi: 10.1007/s41748-019-00101-4

Khah, E.M., E. Kakava, A. Mavromatis, D. Chachalis, and C. Goulas. 2006. Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open-field. J. Appl. Hortic. 8, 3-7. Doi: 10.37855/jah.2006.v08i01.01

Kumar, P. Y. Rouphael, M. Cardarelli, and G. Colla. 2017. Vegetable grafting as a tool to improve drought resistance and water use efficiency. Front. Plant Sci. 8, 1130. Doi: 10.3389/fpls.2017.01130

Kumar, A.B., and K. Sanket. 2017. Grafting of vegetable crops as a tool to improve yield and tolerance against diseases. A review. Int. J. Agric. Sci. 9, 4050-4056.

Lee, J.M., C. Kubota, S.J. Tsao, Z. Bie, P.H. Echevarria, L. Morra, and M. Oda. 2010. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hortic. 127, 93-105. Doi: 10.1016/j.scienta.2010.08.003

Martínez-Andújar, C., J.M. Ruiz-Lozano, I.C. Dodd, A. Albacete, and F. Pérez-Alfocea. 2017. Hormonal and nutritional features in contrasting rootstock-mediated tomato growth under low-phosphorus nutrition. Front. Plant Sci. 8, 13. Doi: 10.3389/fpls.2017.00533

Milenković, L., J. Mastilović, Ž. Kevrešan, A. Bajić, A. Gledić, L. Stanojević, D. Cvetković, L.J. Šunić, and Z.S. Ilić. 2020. Effect of shading and grafting on yield and quality of tomato. J. Sci. Food Agric. 100, 623-633. Doi: 10.1002/jsfa.10057

Miskovic, A., O. Ilic, J. Bacanovic, V. Vujasinovic, and B. Kukic. 2016. Effect of eggplant rootstock on yield and quality parameters of grafted tomato. Acta Sci. Polon. Hortic. Cul. 15, 149-159.

Muneer, S., H. Ch. Ko, H. Wei, Y. Chen, and B.R. Jeong. 2016. Physiological and proteomic investigations to study the response of tomato graft unions under temperature stress. PLoS ONE, 11, 23. Doi: 10.1371/journal.pone.0157439

Ntatsi, G., D. Savvas, H.P. Kläring, and D. Schwarz. 2014. Growth, yield, and metabolic responses of temperature-stressed tomato to grafting onto rootstocks differing in cold tolerance. J. Am. Soc. Hortic. Sci. 139, 230-243. Doi: 10.21273/JASHS.139.2.230

Pogonyi, A., Z. Pék, L. Helyes, and A. Lugasi. 2005. Effect of grafting on the tomato's yield, quality and main fruit components in spring forcing. Acta Aliment. 34, 453-462. Doi: 10.1556/AAlim.34.2005.4.12

Qaryouti, M.M., W. Qawasmi, H. Hamdan, and M. Edwan. 2007. Tomato fruit yield and quality as affected by grafting and growing system. Acta Hortic. 741, 199-206. Doi: 10.17660/ActaHortic.2007.741.22

R Core Team. 2017. R: a language and environment for statistical computing. In: Vienna: R Foundation for Statistical Computing, https://cran.r-project.org; consulted: March, 2020.

Rahmatian, A., M. Delshad, and R. Salehi. 2014. Effect of grafting on growth, yield and fruit quality of single and double stemmed tomato plants grown hydroponically. Hortic. Environ. Biotechnol. 55, 115-119. Doi: 10.1007/s13580-014-0167-6

Reddy, P.P. 2016. Grafted vegetables for management of soilborne pathogens. pp. 83-97. In: Reddy, P.P. (ed.). Sustainable crop protection under protected cultivation. Springer, Singapore. Doi: 10.1007/978-981-287-952-3_7

Riga, P. 2015. Effect of rootstock on growth, fruit production and quality of tomato plants grown under low temperature and light conditions. Hortic. Environ. Biotechnol. 56, 626-638. Doi: 10.1007/s13580-015-0042-0

Savvas, D., G.B. Öztekin, M. Tepecik, A.M. Ropokis, Y. Tüzel, G. Ntatsi, and D. Schwarz. 2017. Impact of grafting and rootstock on nutrient-to-water uptake ratios during the first month after planting of hydroponically grown tomato. J. Hortic. Sci. Biotechnol. 92, 294-302. Doi: 10.1080/14620316.2016.1265903

Sen, A., R. Chatterjee, P. Bhaisare, and S. Subba. 2018. Grafting as an alternate tool for biotic and abiotic tolerance with improved growth and production of solanaceous vegetables: Challenges and scopes in India. Int. J. Curr. Microbiol. App. Sci. 7, 121-135. Doi: 10.20546/ijcmas.2018.701.014

Singh, H., P. Kumar, S. Chaudhari, and M. Edelstein. 2017. Tomato grafting: A global perspective. HortScience 52, 1328-1336. Doi: 10.21273/HORTSCI11996-17

Singh, H., P. Kumar, A. Kumar, M.C. Kyriacou, G. Colla, and Y. Rouphael. 2020. Grafting tomato as a tool to improve salt tolerance. Agron. 10, 21. Doi: 10.3390/agronomy10020263

Torres, P.A. 2017. Tomate al aire libre. Boletín INIA 376. Instituto de Investigaciones Agropecuarias, Santiago.

Turhan, A., N. Ozmen, M.S. Serbeci, and V. Seniz. 2011. Effects of grafting on different rootstocks on tomato fruit yield and quality. Hortic. Sci. 38, 142-149. Doi: 10.17221/51/2011-HORTSCI


Download data is not yet available.