Skip to main navigation menu Skip to main content Skip to site footer

Effect of rootstock/scion compatibility on fruit and foliar nutrient composition in avocado (Persea americana Mill.) cv. Hass in Colombia

Rootstock/scion compatibility (left) and incompatibility (right). Photo: L.E. Cano-Gallego

Abstract

There is limited information in Colombia on the effect of rootstock compatibility on the amount and concentration of nutrients in avocado cv. Hass. This study aimed to determine the effect of rootstock/scion compatibility on fruit and leaf nutritional concentration. This experiment was developed in 9-year-old commercial avocado ‘Hass’ orchards in three locations with a moderately cold climate in Colombia (Rionegro, El Peñol, and Anserma). The scion cv. Hass was grafted on rootstocks with an Antillean origin. 15 trees were selected and marked in each orchard and location, and 25 fruits per tree and per treatment were taken at random (compatible and incompatible grafting). Subsequently, the fresh and dry weight of the skin (epicarp), the pulp (mesocarp), seed, and the seedcoat were obtained. The concentration of major and minor elements was analyzed in each tissue. There was no significant effect on the concentration of nutrients in the fruits from trees with and without compatibility between rootstock and scion. Statistical differences were observed at three locations in the concentration of nutrients in the different parts of the fruit. The nutrient with the highest concentration in the four fruit tissues was K, followed by N. The seed coat had the highest concentration of nutrients for all locations. The embryo had the lowest concentration of the major elements, such as N, K, Ca, Mg, S, and P. The order of the concentration in the fruit tissues was: K> N> Mg> P> Ca> S> Fe> B> Zn > Mn. The compatibility did not show significant differences between the leaf mineral content, nor did it affect the nutrient balances for each element at the foliar level.

Keywords

Peel, Pulp, Seed coat, Nutrient level, Graft compatibility, Tropical fruits

PDF

References

  • Acevedo-Chávez, J.A. and E. Sánchez-Cháves. 2017. Eficiencia del uso de portainjerto sobre el rendimiento y dinámica nutricional foliar de macronutrientes en pimiento morrón. Rev. Mex. Cienc. Agric. 8(3), 685-693. Doi: https://doi.org/10.29312/remexca.v8i3.41
  • Albacete, A., C. Martínez-Andújar, A. Martínez-Pérez, A.J. Thompson, I.C. Dodd, and F. Pérez-Alfocea. 2015. Unravelling rootstock×scion interactions to improve food security. J. Exp. Bot. 66(8), 2211-2226. Doi: https://doi.org/10.1093/jxb/erv027
  • Andrews, K.P. and C.S. Serrano Marquez. 1993. Graft incompatibility. pp. 183-232. In: Janick, J. (ed.). Horticultural reviews. Vol. 15. Wiley, Hoboken, NJ. Doi: https://doi.org/10.1002/9780470650547.ch5
  • Balducci, F., L. Capriotti, L. Mazzoni, I. Medori, A. Albanesi, B. Giovanni, F. Giampieri, B. Mezzetti, and F. Capocasa. 2019. The rootstock effects on vigor, production, and fruit quality in sweet cherry (Prunus avium L.). J. Berry Res. 9(2), 249-265. Doi: https://doi.org/10.3233/JBR-180345
  • Basile, B., J. Marsal, and T.M. DeJong. 2003. Daily shoot extension growth of peach trees growing on rootstocks that reduce scion growth is related to daily dynamics of stem water potential. Tree Physiol. 23(10), 695-704. Doi: https://doi.org/10.1093/treephys/23.10.695
  • Belmonte-Ureña, L.J., J.A. Garrido-Cardenas, and F. Camacho-Ferre. 2020. Analysis of world research on grafting in horticultural plants. HortScience 55(1), 112-120. Doi: https://doi.org/10.21273/HORTSCI14533-19
  • Bernal, J.A. 2016. Estudios ecofisiológicos en aguacate cv. Hass en diferentes ambientes como alternativa productiva en Colombia. PhD thesis. Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Medellin, Colombia.
  • Bernal Estrada, J.A. and C.A. Díaz Díez. 2020. Generalidades del cultivo. pp 77-305. In: Bernal Estrada, J.A. and C.A. Díaz Díaz (eds.). Actualización y buenas prácticas agrícolas (BPA) en el cultivo de aguacate. 2nd ed. Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Mosquera, Colombia. Doi: https://doi.org/10.21930/agrosavia.manual.7403831
  • Cardona, J.M. and S. Fernández Vásquez. 2005. Mediciones y observaciones. pp. 37-51. In: Cardona, J.M. and S. Fernández Vásquez (eds.). Guía de levantamiento de parcelas de inventario forestal. Silvano, Caldas, Colombia. Doi: https://doi.org/10.13140/RG.2.1.3839.0888
  • Chaplin, M.H. and M.N. 1980. Nutritional status of ‘Bartlett’ pear on Cydonia and Pyrus species rootstocks. J. Am. Soc. Hort. Sci. 105(1), 60-63. Doi: https://doi.org/10.21273/JASHS.105.1.60
  • Chen, Z., J. Zhao, Y. Qin, and G. Hu. 2016. Study on the graft compatibility between ‘Jinganghongnuo’ and other litchi cultivars. Sci. Hortic. 199, 56-62. Doi: https://doi.org/10.1016/j.scienta.2015.12.020
  • Colla, G., C.M. Cardona Suarez, M. Cardarelli, and Y. Rouphael. 2010. Improving nitrogen use efficiency in melon by grafting. HortScience 45(4), 559-565. Doi: https://doi.org/10.21273/HORTSCI.45.4.559
  • Davies, F.T., R.L. Genéve, and S.B. Wilson. 2018. Hartmann and Kester's plant propagation. Principles and practices. 9th ed. Pearson, New York, NY. Doi: https://doi.org/10.21273/HORTSCI535bkrev-17
  • Davis, A.R., P. Perkins-Veazie, R. Hassell, A. Levi, S.R. King, and X. Zhang. 2008a. Grafting effects on vegetable quality. HortScience 43(6), 1670-1672. Doi: https://doi.org/10.21273/HORTSCI.43.6.1670
  • Davis, A.R., C.L. Webber III, P. Perkins-Veazie, V. Ruso, S. López Galarza, and Y. Sakata. 2008b. A review of production systems on watermelon quality. pp. 515-520. In: Pirat, M. (ed.) Proc. 9th EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae. INRA, Avignon, France.
  • Djuric, B. and Z. Keserovic. 1999. Study on the possibilities of use of black thorn (Prunus spinosa L.) as an interstock in apricot growing in dense groves. Acta Hortic. 488, 533-538. Doi: https://doi.org/10.17660/ActaHortic.1999.488.86
  • FAO. 2022. Faostat Online Database. Available at: http://www.faostat.fao.org/; consulted: September, 2022.
  • Gaillard, J.P. and J. Godefroy. 1995. Avocado. In: Coste, R. (ed.). The tropical agriculturist series. CTA/Macmillan Education, London.
  • Gazit, S. and C. Degani. 2007. Biología reproductiva. pp. 103-131. In: Whiley, A., B. Schaffer, and B. Wolstenholme (eds.). El palto, botánica, producción y usos. Ediciones Universitarias de Valparaíso, Valparaíso, Chile.
  • Giorgi, M., F. Capocasa, J. Scalzo, G. Murri, M. Battino, and B. Mezzetti. 2005. The rootstock effects on plant adaptability, production, fruit quality, and nutrition in the peach (cv. ‘Suncrest’). Sci. Hortic. 107(1), 36-42. Doi: https://doi.org/10.1016/j.scienta.2005.06.003
  • Goldschmidt, E.E. 2014. Plant grafting: new mechanisms, evolutionary implications. Front. Plant Sci. 5, 727. Doi: https://doi.org/10.3389/fpls.2014.00727
  • Gullo, G., A. Motisi, R. Zappia, A. Dattola, J. Diamanti, and B. Mezzetti. 2014. Rootstock and fruit canopy position affect peach [Prunus persica (L.) Batsch] (cv. Rich May) plant productivity and fruit sensorial and nutritional quality. Food Chem. 153, 234-242. Doi: https://doi.org/10.1016/j.foodchem.2013.12.056
  • Habibi, F., T. Liu, K. Folta, and A. Sarkhosh. 2022. Physiological, biochemical, and molecular aspects of grafting in fruit trees. Hort. Res. 9, uhac032. Doi: https://doi.org/10.1093/hr/uhac032
  • Hartmann, H.T., D.E. Kester, F.T. Davies, and R.L. Geneve. 1990. Plant propagation: principles and practices. 5th ed. Prentice Hall, Eaglewood Cliffs, NJ.
  • Haughn, G. and A. Chaudhury. 2005. Genetic analysis of seed coat development in Arabidopsis. Trends Plant Sci. 10(10), 472-477.
  • Herrera-González, J., S. Salazar-García, P. Gutiérrez-Martínez, and I.J.L. González-Durán. 2013. El comportamiento poscosecha de frutos de aguacate ‘Hass' es influenciado por el portainjerto. Rev. Mex. Cienc. Agric. 4(1), 19-32. Doi: https://doi.org/10.29312/remexca.v4i1.1255
  • ICONTEC. 2011. NTC 5404. Calidad del suelo. Determinación de boro. Bogota.
  • Jaramillo, J.D. 1995. Andisoles del oriente antioqueño. Caracterización química y fertilidad. Instituto de Ciencias Naturales y Ecología, Facultad de Ciencias, Universidad Nacional de Colombia, Medellin, Colombia.
  • Kenworthy, A.L. 1973. Leaf analysis as an aid in fertilizing orchards. pp. 381-392. In: Walsh, L.M. and J.D. Beaton (eds.) Soil testing and plant analysis. Soil Sci. Soc. Amer. Madison, WI.
  • Lazare, S., A. Haberman, U. Yermiyahu, R. Erel, E. Simenski, and A. Dag. 2020. Avocado rootstock influences scion leaf mineral content. Arch. Agron. Soil Sci. 66(10), 1399-1409. https://doi.org/10.1080/03650340.2019.1672163
  • Maldonado T., R. 2002. Diagnóstico nutrimental para la producción de aguacate Hass. Informe de investigación. UACH. Texcoco, Mexico.
  • Maldonado-Torres, R., M.E. Álvarez-Sánchez, G. Almaguer-Vargas, A.F. Barrientos-Priego, and R. García-Mateos. 2007. Estándares nutrimentales para aguacatero 'Hass'. Rev. Chapingo Ser. Hortic. 13(1), 103-108. Doi: https://doi.org/10.5154/r.rchsh.2006.11.051
  • Mickelbart, M.V., G.S. Bender, G.W. Witney, C. Adams, and M.L. Arpaia. 2007. Effects of clonal rootstocks on ‘Hass’ avocado yield components, alternate bearing, and nutrition. J. Hort. Sci. Biotechnol. 82(3), 460-466. Doi: https://doi.org/10.1080/14620316.2007.11512259
  • Muñoz, R. 1998. Fertilización de la papa en Antioquia. pp. 28-46. In: Guerrero, R. (ed.), Fertilización de cultivos en clima frío. Monómeros Colombo Venezolanos, Bogota.
  • R Core Team. 2017. R: a language and environment for statistical computing. Vienna.
  • Ramírez Builes, V.H., A. Jaramillo Roblido, A.J. Peña Quiñones, and J.A. Valencia Arbeláez. 2012. El brillo solar en la zona cafetera colombiana, durante los eventos El Niño y La Niña. Avances Técnicos 421(Junio). Cenicafé, Chichina, Colombia.
  • Reyes-Herrera, P.H., L. Muñoz-Baena, V. Velásquez-Zapata, L. Patiño, O.A. Delgado-Paz, C.A. Díaz-Diez, A.A. Navas-Arboleda, and A.J. Cortés. 2020. Inheritance of rootstock effects in avocado (Persea americana Mill.) cv. Hass. Front. Plant Sci. 11, 555071. Doi: https://doi.org/10.3389/fpls.2020.555071
  • Rom, R.C. 1991. Apricot rootstocks: Perspective, utilization and outlook. Acta Hortic. 293, 345-353.
  • Rosati, A., T.M. DeJong, and S.M. Southwick. 1997. Comparison of leaf mineral content, carbon assimilation and stem water potential of two apricot (Prunus armeniaca) cultivars grafted on 'Citation' and 'Marianna 2624' rootstocks. Acta Hortic. 451, 263-268. Doi: https://doi.org/10.17660/ActaHortic.1997.451.29
  • Rubio, M., P. Martínez-Gómez, J. Pinochet, and F. Dicenta. 2008. Evaluation of resistance to sharka (Plum pox virus) of several Prunus rootstocks. Plant Breed. 124(1), 67-70. Doi: https://doi.org/10.1111/j.1439-0523.2004.01068.x
  • Salazar-García, S., I.J.L. González-Durán, and L.M. Tapia-Vargas. 2011. Influencia del clima, humedad del suelo y época de floración sobre la biomasa y composición nutrimental de frutos de aguacate ‘Hass’ en Michoacán, México. Rev. Chapingo Ser. Hortic. 17(2), 183-194. Doi: https://doi.org/10.5154/r.rchsh.2011.17.020
  • Salazar-García, S. and I. Lazcano-Ferrat. 2003. La fertilización en "sitio específico" incrementa los rendimientos y el tamaño de la fruta del aguacate en México. pp. 373-377. In: Proc. 5th World Avocado Congress. Granada and Malaga, Spain.
  • Salazar-García, M., A. Mellado-Vázquez, S. Álvarez-Bravo, M.E. Ibarra-Estrada, and J. González-Valdivia. 2021. Remosión de nutrimentos por frutos de aguacate Méndez. Rev. Fitotec. Mex. 44(2) 151-159. Doi: https://doi.org/10.35196/rfm.2021.2.151
  • Shackel, K.A., H. Ahmadi, W. Biasi, R. Buchner, D. Goldhamer, S. Gurusinghe, J. Hasey, D. Kester, B. Krueger, B. Lampinen, G. McGourty, W. Micke, E. Mitcham, B. Olson, K. Pelletrau, H. Philips, D. Ramos, L. Schwankl, S. Sibbett, R. Snyder, S. Southwick, M. Stevenson, M. Thorpe, S. Weinbaum, and J. Yeager. 1997. Plant water status as an index of irrigation need in deciduous fruit trees. HortTechnol. 7(1), 23-29. Doi: https://doi.org/10.21273/HORTTECH.7.1.23
  • Tamayo V., A., J.A. Bernal E., and C.A. Díaz D. 2018. Composition and removal of nutrients by the harvested fruit of avocado cv. Hass in Antioquia. Rev. Fac. Nac. Agron. Medellín 71(2), 8511-8516. Doi: https://doi.org/10.15446/rfna.v71n2.71929
  • Tamayo, A. and W. Osorio. 2014. Nutrición y fertilización. pp. 182-212. In: Corpoica (ed). Actualización tecnológica y buena prácticas agrícolas (BPA) en el cultivo de aguacate. Medellin, Colombia.
  • Téliz, D. and A. Mora (eds.). 2015. El aguacate y su manejo integrado. 3rd ed. Colegio de Postgraduados, Mundi-Prensa, Mexico, DF.
  • Waltz, M.D. 1996. Utilization of closed-in-place underground storage tanks in the remediation of contaminated soils and groundwater. pp. 359-374. In: Smith, G. and R.F. Hickey (eds.). Biotechnology in Industrial waste treatment and bioremediation. CRC Press, Boca Raton, FL.
  • West, S. and E. Young. 1988. Effects of rootstock and interstocks on seasonal changes in foliar nutrient (N, P, K, Ca) composition of Delicious and Golden apple. Fruit Var. J. 42, 9-12.
  • Yassin, H. and S. Hussen. 2015. Review on role of grafting on yield and quality of selected fruit vegetables. Global J. Sci. Front Res.: D. Agric. Vet. 15(1), 1-15.
  • Yetisir, H. 2001. Effect of grafted seedling on plant growth, fruit yield and quality in watermelon and investigation of grafting point histologically. PhD thesis. Department of Horticulture, Cukurova University, Adana, Turkey.
  • Yetisir, H., E. Özdemir, V. Aras, E. Candır, and Ö. Aslan. 2013. Rootstocks effect on plant nutrition concentration in different organ of grafted watermelon. Agric. Sci. 4(5), 230-237. Doi: https://doi.org/10.4236/as.2013.45033

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.