Relationship between the chlorophyll a fluorescence and the yield in banana (Musa AAA Simmonds cv. Cavendish)

Relación entre la fluorescencia de la clorofila a y el rendimiento en el banano (Musa AAA Simmonds cv. Cavendish)

Main Article Content

Diego Felipe Feria-Gómez
Diego Alejandro Londoño-Puerta
Oscar de Jesús Córdoba-Gaona


Chlorophyll fluorescence is used to characterize the plant response to natural environments or under stress conditions. This study aimed to identify correlations between the maximum quantum efficiency of PSII (Qy) with climatic and soil variables associated with bunch weight. The experimental design used in the field corresponds to an observational and longitudinal study, where 72 production units in the independent vegetative stage were randomly selected, of which 36 units from a low production area and 36 from a high production area. In each unit, the quantum yield (Qy: Fv/Fm) was measured and correlated with climatic and soil variables, the nutrient content in the leaves, and the average weight of the cluster in each sampled batches. The results indicated a correlation between Qy of -0.703 concerning temperature and -0.583 with radiation. On the other hand, pH and resistance to soil penetration are directly related to Qy to a lesser extent, with r2 values of 12.77 and 24.28%, respectively. Precipitation, wind, gusts, dew point, atmospheric pressure, and texture composition of the soil do not significantly affect Qy variation; when attacks of leaf pests (mites) occur, significant reductions are also observed in this. Qy is a variable that responds to the stress generated by factors external to the plant, these can significantly affect production, and which is reduced by up to two kg per cluster, with a bias of three to four weeks, when the loss of 0.04 points in the value of Qy occurs.



Download data is not yet available.

Article Details

References (SEE)

Adak, M.K. 2018. Analysis of chlorophyll fluorescence: A reliable technique in determination of stress on plants. pp. 63-88. In: Sengar R. and A. Singh (eds). Eco-friendly agro-biological techniques for enhancing crop productivity. Springer, Singapur. Doi: 10.1007/978-981-10-6934-5_4

Adams III, W.W., M. Díaz, and K. Winter. 1989. Diurnal changes in photochemical efficiency, the reduction state of Q, radiationless energy dissipation, and non-photochemical fluorescence quenching in cacti exposed to natural sunlight in northern Venezuela. Oecologia 80(4), 553-561. Doi: 10.1007/BF00380081

AUGURA, Asociación de Bananeros de Colombia. 2021. Coyuntura bananera 2020. In:; consulted: May, 2021.

Barrera Violet, J.L., J.R. Cartagena Valenzuela, and O.A. Nanclares Gómez. 2020. Influence of high planting densities and arrangements on yield and fruit development of Musa AAA Simmonds. Acta Agron. 69(1), 46-53. Doi: 10.15446/acag.v69n1.79834

Bouyoucos, G.J. 1936. Directions for making mechanical analyses of soils by the hydrometer method. Soil Sci. 42(3), 225-230. Doi: 10.1097/00010694-193609000-00007

Buffon, G., E.A.R. Blasi, T.I. Lamb, J.M. Adamski, J. Schwambach, F.K. Ricachenevsky, A. Bertolazi, V. Silveira, M.C.B. Lopes, and R. Sperotto. 2020. Nipponbare and wild rice species as unexpected tolerance and susceptibility sources against Schizotetranychus oryzae (Acari: Tetranychidae) mite infestation. Front. Plant Sci. 12, 613568. Doi: 10.3389/fpls.2021.613568

Bukhov, N.G. and R. Carpentier. 2004. Effects of water stress on the photosynthetic efficiency of plants. pp. 623-635. In: Papageorgiou G.C. and Govindjee (eds.). Chlorophyll a fluorescence. Advances in photosynthesis and respiration. Vol. 19. Springer, Dordrecht, The Netherlands. Doi: 10.1007/978-1-4020-3218-9_24

Catalina Tomás, A. 2015. Utilización de medidas de fluorescencia de la clorofila para monitorizar el estado nutricional y estimar el potencial enológico en viñedos afectados por clorosis férrica. PhD thesis. Escuela Técnica Superior de Ingenierías Agrias, Universidad de Valladolid, Palencia, Spain.

Chacón-Hernández, J.C., I. Camacho-Aguilar, E. Cerna-Chavez, S. Ordaz-Silva, Y.M. Ochoa-Fuentes, and J. Landeros-Flores. 2018. Efectos de Tetranychus urticae y Phytoseiulus persimilis (Acari: Tetranychidae: Phytoseiidae) en la clorofila de plantas de rosal (Rosa sp.). Agrociencia 52(6), 895-909.

Cheng, L., L.H. Fuchigami, and P.J. Breen. 2000. Light absorption and partitioning in relation to nitrogen content in `Fuji' apple leaves. J. Amer. Soc. Hort. Sci. 125(5), 581-587. Doi: 10.21273/JASHS.125.5.581

Da Silva, J.M. and M.C. Arrabaça. 2004. Photosynthesis in the water-stressed C4 grass Setaria sphacelata is mainly limited by stomata with both rapidly and slowly imposed water deficits. Physiol. Planta. 121(3), 409-420. Doi: 10.1111/j.1399-3054.2004.00328.x

De Mendiburu, F. 2021. Agricolae: Statistical procedures for agricultural research. R v. 1.3-5.; consulted: May, 2021.

Donato, S.L.R., A.M. Arantes, E.F. Coelho, and M.G.V. Rodrigues. 2015. Considerações ecofisiológicas e estratégias de manejo da bananeira. In: VIII Simposio Brasileiro sobre Bananicultura – SIBANANA, Embrapa Mandioca e Fruticultura, Montes Claros, Brazil.

FAO. 2021. FAOSTAT – Food and agriculture data. In:; consulted: May, 2021.

Gross, J. and U. Ligges. 2015. Package ‘nortest’: Tests for normality. R v. 1.0-4. In:; consulted: May, 2021.

Grossiord, C., T.N. Buckley, L.A. Cernusak, K.A. Novick, B. Poulter, R.T.W. Siegwolf, J.S. Sperry, and N.G. McDowell. 2020. Plant responses to rising vapor pressure deficit. New Phytol. 226(6), 1550-1566. Doi: 10.1111/nph.16485

Haldimann, P. and U. Feller. 2004. Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Cell and Environ. 27(9), 1169-1183. Doi: 10.1111/j.1365-3040.2004.01222.x

Havaux, M. 1993. Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant Cell Environ. 16(4), 461-467. Doi: 10.1111/j.1365-3040.1993.tb00893.x

ICA, Instituto Colombiano Agropecuario. 2019. Delegación China busca aumentar, en más de un millón de toneladas, las importaciones de banano colombiano. In:; consulted: May, 2021.

Jiang, Y., Y. Li, Q. Zeng, J. Wei, and H. Yu. 2017. The effect of soil pH on plant growth, leaf chlorophyll fluorescence and mineral element content of two blueberries. Acta Hortic. 1180, 269-276. Doi: 10.17660/actahortic.2017.1180.36

Kim, J.H., S.R. Bhandari, S.Y. Chae, M.C. Cho, and J.G. Lee. 2019. Application of maximum quantum yield, a parameter of chlorophyll fluorescence, for early determination of bacterial wilt in tomato seedlings. Hortic. Environ. Biotechnol. 60(6), 821-829. Doi: 10.1007/s13580-019-00182-0

Lobo, M.G. and F.J. Fernández Rojas. 2020. Biology and postharvest physiology of banana. pp. 19-44. In: Siddiq, M., J. Ahmed, and M.G. Lobo (eds.). Handbook of banana production, postharvest science, processing technology, and nutrition. Wiley, Hoboken, NJ. 10.1002/9781119528265.ch2

Manterola D., C. and D. Zavando M. 2009. Cómo interpretar los “Niveles de Evidencia” en los diferentes escenarios clínicos. Rev. Chil. Cir. 61(6), 582-595. Doi: 10.4067/s0718-40262009000600017

Maxwell, K. and G.N. Johnson. 2000. Chlorophyll fluorescence — a practical guide. J. Exp. Bot. 51(345), 659-668. Doi: 10.1093/jexbot/51.345.659

Osorio, N.W. 2014. Manejo de los nutrientes en suelos del trópico. 2nd ed. Universidad Nacional de Colombia; Editorial LA Vieco, Medellin, Colombia.

Pérez Asseff, J.M., E.J. Peña Salamanca, and C. Torres González. 2017. Efecto del nitrógeno y la irradianza en la eficiencia fotosintética del anamú Petiveria alliacea (Phytolaccaceae). Rev. Acad. Colomb. Cienc. Fis. Nat. 31(118), 49-55.

Pérez, W.A. and J. Torres-Bazurto. 2020. Carbon-nitrogen ratio in soils with fertilizer applications and nutrient absorption in banana (Musa spp.) cv. Williams. Agron. Colomb. 38(2), 253-260. Doi: 10.15446/agron.colomb.v38n2.78075

Ravi, I., S. Uma, M.M. Vaganan, and M.M. Mustaffa. 2013. Phenotyping bananas for drought resistance. Front. Physio. 4, 9. Doi: 10.3389/fphys.2013.00009

Robinson, J.C. and J.P. Bower. 1988. Transpiration from banana leaves in the subtropics in response to diurnal and seasonal factors and high evaporative demand. Sci. Hortic. 37(1-2), 129-143. Doi: 10.1016/0304-4238(88)90156-2

Robinson, J.C. and V. Galán Saúco (eds.). 2010. Bananas and plantains. Crop Production Science in Horticulture. Vol. 19. 2nd ed. Cabi, Wallingford, UK. Doi: 10.1079/9781845936587.0000

Sanz Miguel, M.A., A. Blanco Braña, E. Monje, and J. Val Falcón. 2001. Caracterización de la deficiencia de calcio en plantas de tomate utilizando parámetros fisiológicos. Revista ITEA 97V(1), 26-38.

Schloerke, B., Di Cook, J. Larmarange, F. Briatte, M. Marbach, E. Thoen, A. Elberg, O. Toomet, J. Crowley, H. Hofmann, and H. Wickham. 2021. GGally: Extension to 'ggplot2'. R v. 2.1.1. In:; consulted: May, 2021.

Thomas, D.S. and D.W. Turner. 2001. Banana (Musa sp.) leaf gas exchange and chlorophyll fluorescence in response to soil drought, shading and lamina folding. Sci. Hortic. 90(1-2), 93-108. Doi: 10.1016/s0304-4238(00)00260-0

Wickham, H. 2016. ggplot2: Elegant graphics for data analysis. Springer-Verlag, New York. Doi: 10.1007/978-3-319-24277-4

Zhang, J.Z., Q. Zhang, Y.J. Chen, L.L. Sun, L.Y. Song, and C.L. Peng. 2012. Improved tolerance toward low temperature in banana (Musa AAA Group Cavendish Williams). S. Afr. J. Bot. 78, 290-294. Doi: 10.1016/j.sajb.2011.08.002

Živčák, M., M. Brestič, K. Olšovská, and P. Slamka. 2008. Performance index as a sensitive indicator of water stress in Triticum aestivum L. Plant Soil Environ. 54(4), 133-139. Doi: 10.17221/392-pse

Citado por: