Stigmatic receptivity and hybridization in cowpea beans (Vigna unguiculata L. (Walp.))
Abstract
Classic plant breeding, based on the selection of superior individuals and directed crosses, led to the need-to-know aspects of the floral biology of cowpea beans. The research was carried out at the Universidad de Córdoba, Colombia, through two experiments: in the first, stigmatic receptivity was evaluated as response time to hydrogen peroxide, under a randomized complete block design, with a 3×4 factorial arrangement (three genotypes: Caupicor 50, Missouri and BRS Milenium, and at four hours of the day: 7:00 and 9:00 AM; 3:00 and 5:00 PM) and three replications. In the second, the percentage of viable crosses was evaluated, under a randomized complete block design, with a 2×2 factorial arrangement (two crosses: Missouri × IT86 and Missouri × BRS Milenium, and two methods: 1 (morning) and 2 (afternoon), and four replications. The greatest stigmatic receptivity was recorded in the BRS Milenium and Missouri genotypes with a time of 3.28±0.07 and 2.01±0.12 min at 7:00 and 9:00 AM, while Caupicor 50, time of 1.80±0.09 min at 3:00 PM. The artificial hybridizations carried out in the morning (method 1) registered the highest viable crosses, 78.6% in Missouri × BRS Milenium and 57.1% in Missouri × IT86. Therefore, artificial hybridizations should be done in the morning due to a more favorable environment for pollen grain germination, given the greater stigmatic receptivity.
Keywords
Flower stigma, Peroxidase, Emasculation, Anthesis, Pollination
References
- Araméndiz-Tatis, H., C. Cardona-Ayala, A. Jarma, E. Combatt, J. Jaraba, T. Mercado, M. Espitia-Camacho, C. de Paula, Y. Pastrana, and J. Hernández. 2019. Manejo agronómico del frijol caupí en el Caribe colombiano. Universidad de Córdoba, Montería, Colombia.
- Bheemanahalli, R., V.J. Sunoj, G. Saripalli, P.V. Prasad, H.S. Balyan, P.K. Gupta, N. Grant, and S.K. Jagadish. 2019. Quantifying the impact of heat stress on pollen germination, seed set, and grain filling in spring wheat. Crop Sci. 59(2), 684-696. Doi: https://doi.org/10.2135/cropsci2018.05.0292
- Boukar, O., C.A. Fatokun, P.A. Roberts, M. Abberton, B.L. Huynh, T.J. Close, S.K. Boahen, T.J. Higgins, and J.D. Ehlers. 2015. Cowpea. pp. 219-250. In: De Ron, A.M. (ed.). Grain legumes: Handbook of plant breeding. Vol. 10. Springer. New York, NY. Doi: https://doi.org/10.1007/978-1-4939-2797-5_7
- Boukar, O., A. Togola, S. Chamarthi, N. Belko, H. Ishikawa, K. Suzuki, and C. Fatokun. 2019. Cowpea [Vigna unguiculata (L.) Walp.] breeding. pp. 201-243. In: Al-Khayri, J.M., S.M. Jain, and D.V. Johnson (eds.). Advances in plant breeding strategies: legumes. Springer, Cham, Switzerland. Doi: https://doi.org/10.1007/978-3-030-23400-3_6
- Chen, F., W. Yuan, X. Shi, and Y. Ye. 2013. Evaluation of pollen viability, stigma receptivity and fertilization success in Lagerstroemia indica L. Afr. J. Biotechnol. 12(46), 6460-6467. Doi: https://doi.org/10.5897/AJB11.3594
- Crispim, J.G., E.R. Rêgo, M.M. Rêgo, N.F.F. Nascimento, and P.A. Barroso. 2017. Stigma receptivity and anther dehiscence in ornamental pepper. Hortic. Bras. 35(4), 609-612. Doi: https://doi.org/10.1590/S0102-053620170421
- Dresselhaus, T. and N. Franklin-Tong. 2013. Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol. Plant 6(4), 1018-1036. Doi: https://doi.org/10.1093/mp/sst061
- Galen, C. and R.C. Plowright. 1987. Testing the accuracy of using peroxidase activity to indicate stigma receptivity. Can. J. Bot. 65(1), 107-111. Doi: https://doi.org/10.1139/b87-015
- Gill, M. 2014. Pollen storage and viability. Int. J. Bot. Res. 4(5), 1-18.
- Giorno, F., M. Wolters-Arts, C. Mariani, and I. Rieu. 2013. Ensuring reproduction at high temperatures: the heat strees response during anther and pollen development. Plants 2(3), 489-506. Doi: https://doi.org/10.3390/plants2030489
- Gupta, R., H. Sutradhar, S.K. Chakrabarty, M.W. Ansari, and Y. Singh. 2015. Stigmatic receptivity determines the seed set in Indian mustard, rice and wheat crops. Commun. Integr. Biol. 8(5), e1042630. Doi: https://doi.org/10.1080/19420889.2015.1042630
- Jiang, Y., R. Lahlali, C. Karunakaran, T.D. Warkentin, A.R. Davis, and R.A. Bueckert. 2019. Pollen, ovules, and pollination in pea: Success, failure, and resilience in heat. Plant Cell Environ. 42(1), 354-372. Doi: https://doi.org/10.1111/pce.13427
- Kaushal, N., K. Bhandari, K.H. Siddique, and H. Nayyar. 2016. Food crops face rising temperatures: an overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food Agric. 2(1), 1134380. Doi: https://doi.org/10.1080/23311932.2015.1134380
- Khattak, G.S.S., I. Saeed, and T. Muhammad. 2009. Flowers’ shedding under high temperature in mungbean (Vigna radiata (l.) Wilczek). Pak. J. Bot. 41(1), 35-39.
- Kumar, R.R., S. Goswami, M. Shamim, U. Mishra, M. Jain, K. Singh, J.P. Singh, K. Dubey, S. Singh, G.K. Rai, G. Singh, H. Pathak, V. Chinnusamy, and S. Praveen. 2017. Biochemical defense response: characterizing the plasticity of source and sink in spring wheat under terminal heat stress. Front. Plant Sci. 8, 1603. Doi: https://doi.org/10.3389/fpls.2017.01603
- Li, C., J. Su, X. Liu, S. Chen, and L. He. 2014. Pistillate flower development and stigma receptivity of Euphorbia pulcherrima. Agric. Sci. Technol. 15(10), 1671-1675.
- Maity, A., S.K. Chakarbarty, P. Pramanik, R. Gupta, S.S. Parmar, and D.K. Sharma. 2019. Response of stigma receptivity in CMS and male fertile line of Indian mustard (B. juncea) under variable thermal conditions. Int. J. Biometeorol. 63, 143-152. Doi: https://doi.org/10.1007/s00484-018-1645-9
- Nameirakpam, B. and V.K. Khanna. 2018. Studies on crossability and genetic diversity in cowpea (Vigna unguiculata L. Walp.). Int. J. Environ. Sci. Natural Resour. 13(1), 8-16. Doi: https://doi.org/10.19080/ijesnr.2018.13.555852
- Nunes, E.D., C.A.F. Santos, A.G. Medeiros, L.S. Diniz, and S.R. Costa. 2010. Hibridação artificial em feijão-caupi (Vigna unguiculata Walp) em diferentes cultivares. p. 18. In: Encontro de Genética Do Nordeste: Genética, Biodiversidade e Conservação. Embrapa Semiárido; Sociedade Brasileira de Genética. Jequié, Brazil.
- Osborn, M.M., P.G. Kevan, and M.A. Lane. 1988. Pollination biology of Opuntia polyacantha and Opuntia phaecantha (Cactaceae) in Southern Colorado. Pl. Syst. Evol. 159, 85-94. Doi: https://doi.org/10.1007/bf00937427
- Palencia, G., T. Mercado, and E. Combatt. 2006. Estudio agroclimático del departamento de Córdoba. Universidad de Cordoba, Montería, Colombia.
- Parrotta, L., C. Faleri, M. Cresti, and G. Cai. 2016. Heat stress affects the cytoskeleton and the delivery of sucrose synthase in tobacco pollen tubes. Planta 243(1), 43-63. Doi: https://doi.org/10.1007/s00425-015-2394-1
- Priya, M., L. Sharma, R. Kaur, H. Bindumadhava, R.M. Nair, K.H.M. Siddique, and H. Nayyar. 2019. GABA (γ-aminobutyric acid), as a thermo-protectant, to improve the reproductive function of heat-stressed mungbean plants. Sci. Rep. 9(1), 7788. Doi: https://doi.org/10.1038/s41598-019-44163-w
- Poonia, A., D.S. Phogat, and D. Phougat. 2018. Cowpea breeding: status and perspectives. pp. 50-56. In: Nigam, R., J. Singh, W. Hasan, and N. Kapoor (eds.). Advances in environment and agriculture biotechnology. Weser Books, Zittau, Germany.
- Rangkham, T. and V.K. Khanna. 2018. Studies on hybridization and genetic diversity in cowpea (Vigna unguiculata L). Open Acc. J. Oncol. Med. 2(1), 125-134. Doi: https://doi.org/10.32474/OAJOM.2018.02.000132
- Sage, T.L., S. Bagha, V. Lundsgaard-Nielsen, H.A. Branch, S. Sultmanis, and R.F. Sage. 2015. The effect of high temperature stress on male and female reproduction in plants. Field Crops Res. 182, 30-42. Doi: https://doi.org/10.1016/j.fcr.2015.06.011
- Silva, L.A.C., M.S. Pagliarini, S.A. Santos, and C.B. Valle. 2013. Stigma receptivity, mode of reproduction, and mating system in Mesosetum chaseae Luces (Poaceae), a native grass of the Brazilian Pantanal. Genet. Mol. Res. 12(4), 5038-5045. Doi: https://doi.org/10.4238/2013.October.25.2
- Sita, K., A. Sehgal, J. Kumar, S. Kumar, S. Singh, K.H.M. Siddique, and H. Nayyar. 2017. Identification of high-temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Front. Plant Sci. 8, 744. Doi: https://doi.org/10.3389/fpls.2017.00744
- Snider, J.L., D.M. Oosterhuis, B.W. Skulman, and E.M. Kawakami. 2009. Heat stress‐induced limitations to reproductive success in Gossypium hirsutum. Physiol. Plant. 137(2), 125-138. Doi: https://doi.org/10.1111/j.1399-3054.2009.01266.x
- Sorkheh, K., R. Azimkhani, M. Nastaran, M. Chaleshtori, J. Halasz, S. Ercisli, and C. Koubouris. 2018. Interactiva effects of temperature and genotype on almond (Prunus dulcis L.) pollen germination and tube length. Sci. Hortic. 227, 162-168. Doi: https://doi.org/10.1016/j.scienta.2017.09.037
- Thimmaiah, M.R., S.B. Choudhary, H.K. Sharma, A.A. Kumar, H. Bhandari, J. Mitra, and P.G. Karmakar. 2018. Late-acting self-incompatibility: a barrier to self-fertilization in sunnhemp (Crotalaria juncea L.). Euphytica 214(2), 19. Doi: https://doi.org/10.1007/s10681-017-2096-9
- Thuzar, M., A.B. Puteh, N.A.P. Abdullah, M.B. Lassim, and K. Jusoff. 2010. The effects of temperature stress on the quality and yield of soya bean [(Glycine max L.) Merrill.]. J. Agric. Sci. 2(1), 172-179. Doi: https://doi.org/10.5539/jas.v2n1p172
- Ting, P., Y. Tu, C. Lin, H. Chang, L. Chen, and L. Chan. 2014. Reproductive fitness of outcrossed hybrids between transgenic broccoli (Brassica oleracea) carrying the ipt transgene and conventional varieties of kale, broccoli and cauliflower. Pak. J. Bot. 46(4), 1437-1444.
- Tondonba, S.P., V.K. Khanna, and V.U. Tejaswini. 2018. Crossability studies and genetic diversity analysis in blackgram (Vigna mungo L. Hepper) using molecular markers. Agrotechnol. 7(2), 179. Doi: https://doi.org/10.4172/2168-9881.1000179
- Vargas-Araújo, J., M. Andrade-Rodríguez, O. Villegas-Torres, A. Castillo-Gutiérrez, M. Colinas-León, E. Avitia-García, and I. Alia-Tejacal. 2017. Características reproductivas de nueve variedades de nochebuena (Euphorbia pulcherrima Willd. Ex Klotzch). Rev. Mex. Cienc. Agríc. 8(2), 295-306. Doi: https://doi.org/10.29312/remexca.v8i2.51
- Yu, B., L. Liu, and T. Wang. 2019. Deficiency of very long chain alkanes biosynthesis causes humidity‐sensitive male sterility via affecting pollen adhesion and hydration in rice. Plant Cell Environ. 42(12), 3340-3354. Doi: https://doi.org/10.1111/pce.13637
- Zary, K.W. and J.C. Miller Junior. 1982. Comparison of two methods of hand-crossing Vigna unguiculata (L.) Walp. HortScience 17(2), 246-248.