Genotype-environment interaction for production characteristics in cherry tomato (Solanum spp.)

Main Article Content


Nelson Ceballos-Aguirre
Franco Alirio Vallejo-Cabrera
Yacenia Morillo-Coronado


Much of the tomato diversity is found in cherry-type populations. There are promising wild cherry tomato species with good behavior in terms of yield and quality that can be produced with a minimum of agro-inputs. The genetic expression of genotypes is influenced by the optimal environment they can develop in. The genotype-environment interaction must be known to estimate the phenotypic adaptability in different environments. The objective of this research was to evaluate the genotype-environment interaction for 10 cherry tomato introductions in nine environments, four of which were artificial environments (0, 60, 120 and 180 kg ha-1 of potassium) established in natural environments on the Farms Montelindo, Tesorito and CEUNP. The experiment design used randomized complete blocks with four replicates; the experiment unit consisted of five effective plants per introduction. The evaluated variables were production per plant (PFT) (kg/pl), number of fruits per plant (NFT), and average fruit weight (AWF) (g/fruit). The genotype×environment interaction and the stability of the 10 genotypes were estimated with the AMMI multivariate model. The environments for T120K and T180K were optimal for the variables associated with production (PFT, NFT and AWF), with IAC1621, IAC426 and IAC1624 being the most promising genotypes per environment on the Farms Tesorito, Montelindo and CEUNP, respectively. The results are useful for the identification of genotypes in key locations for selection and evaluation in breeding programs.


Article Details


Abdallah, R.A.B., S. Mokni-Tlili, A. NefzI, H.J. Khiareddine, and M. Daami-Remadi. 2016. Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol. Control 97, 80-88. Doi: 10.1016/j.biocontrol.2016.03.005

AGRONET. 2021. Crops – Tomato. In:; consulted: February, 2021.

Al-Aysh, F.M. 2014. Genotype-environment interaction and phenotypic stability for fruit yield and its productive components of tomato. J. Recent Adv. Agric. 2, 219-226.

Amjad, M., J. Akhtar, M. Anwar-Ui-Haq, S. Imran, and S. Jacobsen. 2014. Soil and foliar application of potassium enhances fruit yield and quality of tomato under salinity. Turk. J. Biol. 38, 208-218. Doi: 10.3906/biy-1305-54

Armita, D., A.P. Rahayu, M.D. Maghfoer, and D.A.F. Fuadi. 2017. Effect of potassium fertilization on the yield and quality of two tomato varieties. Biosci. Res. 14(4), 1150-1155.

Balzarini, M.G. and J.A. Di Rienzo. 2003. Infogen: Software para análisis estadísticos de marcadores genéticos. Facultad de Ciencias Agropecuarias. Universidad Nacional de Córdoba. Cordoba, Argentina.

Casals, J., A. Rivera, J. Sabaté, R. Romero del Castillo, and J. Simó. 2018. Cherry and fresh market tomatoes: differences in chemical, morphological, and sensory traits and their implications for consumer acceptance. Agronomy (Switzerland) 9(9), 1-18. Doi: 10.3390/agronomy9010009

Crossa, J. 1990. Statistical analyses of multilocation trials. Adv. Agron. 44, 55-85. Doi: 10.1016/S0065-2113(08)60818-4

Crossa, J., H.G. Gauch, and R.W. Zobel. 1990. Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop Sci. 30(3), 493-500. Doi: 10.2135/cropsci1990.0011183X003000030003x

Eberhart, S. and W. Russel. 1966. Stability parameters for comparing varieties. Crop Sci. 6, 36-40. Doi: 10.2135/cropsci1966.0011183X000600010011x

FAO. 2021. FAOSTAT – Statis crops. In:; consulted: April, 2021.

Flores-Hernández, L.A., R. Lobato Ortíz, J.J. García Zavala, J.D. Molina Galán, D.M. Sargerman Jarquín, and M.D. Velasco Alvarado. 2017. Parientes silvestres del tomate como fuente de germoplasma para el mejoramiento genético de la especie. Rev. Fitotec. Mex. 40(1), 83-91. Doi: 10.35196/rfm.2017.1.83-91

Hernández-Leal, E., R. Lobato-Ortiz, J.J. García-Zavala, A. Hernández-Bautista, D. Reyes-López, and O. Bonilla-Barrientos. 2019. Stability and breeding potential of tomato hybrids. Chil. J. Agric. Res. 79(2), 181-189. Doi: 10.4067/S0718-58392019000200181

Hernández-Pérez, O.I., L.A. Valdez-Aguilar, I. Alia-Tejacal, A.D. Cartmill, and D.L. Cartmill. 2019. Tomato fruit yield, quality, and nutrient status in response to potassium: calcium balance and electrical conductivity in the nutrient solution. J. Soil Sci. Plant Nutr. 20, 484-492. Doi: 10.1007/s42729-019-00133-9

Herrera, H., S.A. Hurtado, and A.N. Ceballos. 2015. Estudio técnico y económico del tomate tipo cereza élite (Solanum lycopersicum L. var. Cerasiforme) bajo condiciones semicontroladas. Rev. Colomb. Cienc. Hortic. 9(2), 290-300. Doi: 10.17584/rcch.2015v9i2.4185

Jaramillo, J., V.P. Rodríguez, M. Guzmán, M. Zapata, and T. Rengifo. 2007. Buenas prácticas agrícolas en la producción de tomate bajo condiciones protegidas. FAO, Gobernación de Antioquia, FAO-MANA, CORPOICA, Medellin, Colombia.

Khan, A.A., M. Sajid, A. Rab, S. Alam, and A. Bari. 2014. Effect of potassium sources on the growth, yield and fruit quality of tomato cultivars. Sarh. J. Agric. 30(4), 442-450.

Machado, J., L. Braz, and G. Grilli. 2003. Desempenho de produção de cultivares de tomateiro tipo Cereja em diferentes espaçamentos (CD). Hortic. Bras. 21(2), 356-356.

Mandal, A.R., B.K. Senapati, and T.K. Maity. 2000. Genotype-environment interaction, stability and adaptability of tomato (Lycopersicon esculentum Mill.). Veg. Sci. 27(2), 155-157.

Marschner, H. (ed.). 1995. Mineral nutrition of higher plants. 2nd ed. Academic Press, New York, NY. Doi. 10.1016/B978-012473542-2/50010-9

Medina, C.I. and M. Lobo. 2001. Variabilidad morfológica en el tomate pajarito (Lycopersicon esculentum var. Cerasiforme), precursor del tomate cultivado. Corpoica Cienc. Tecnol. Agropecu. 3(2), 39-50. Doi: 10.21930/rcta.vol3_num2_art:186

Mohamed, A.G., A.M. Ahmed, and R.M. Galal. 2013. Genotypic and phenotypic stability for new lines of tomato (Solanum lycopersicum L.). Assiut J. Agric. Sci. 44(2), 105-123.

Mohammadi, M., T. Hosseinpourt, M. Armion, H. Khanzadeh, and H. Ghojogh. 2016. Analysis of genotype, environment and genotype × environment interaction in bread wheat genotypes using GGE Biplot. Agri. Communi. 4(3), 1-8.

Nowosad, K., A. Liersch, W. Popławska, and J. Bocianowski. 2016. Genotype by environment interaction for seed yield in rapeseed (Brassica napus L.) using additive main effects and multiplicative interaction model. Euphytica 208, 187-194. Doi: 10.1007/s10681-015-1620-z

Panthee, D.R., C. Cao, S.J. Debenport, G.R. Rodriguez, J.A. Labate, L.D. Robertson, A.P. Breksa, E.V.D. Knaap, and B.B.M. Gardner. 2012. Magnitude of genotype x environment interactions affecting tomato fruit quality. HortScience 47(6), 721-726. Doi: 10.21273/HORTSCI.47.6.721

Parga, T.V.M., V.V.M. Zamora, V.V.M. González, G.S.J. García, and G.E.E. Villavicencio. 2005. Interacción genotipo por ambiente en clones de papa bajo riego en el noreste de México. Agric. Téc. Méx. 31(1), 55-64.

Prasanna, H.C., T. Chaubey, R. Kumar, M. Rai, A. Verma, and S. Singh. 2007. Identification of stable variety for yield and quality attributes in tomato. Veg. Sci. 34, 131-134.

Sánchez, A., E.F. Borrego, V.V. Zamora, C.J. Sánchez, and R.F. Castillo. 2015. Estimación de la interacción genotipo-ambiente en tomate (Solanum lycopersicum L.) con el modelo AMMI. Rev. Mex. Cienc. Agríc. 6(4), 763-778. Doi: 10.29312/remexca.v6i4.617

SAS Institute. 1992. User’s guide v. 9.1. Cary, NC.

Savale, S.V. and A.I. Patel. 2017. Stability analysis for yield and quality attributes in tomato (Solanum lycopersicum L.). J. Pharmacogn. Phytochem. 6(6), 637-642.

Shankar, A., R.V.S.K. Reddy, P. Saidaiah, K. Uma Krishna, and K. Uma Jyothi. 2017. Study of stability analysis for yield and quality in tomato (Solanum lycopersicum L.) over the seasons. J. Entomol. Zool. Stud. 5(5), 505-509.

Srinivas, C., D. Nirmala, K. Narasimha Murthy, C.D. Mohan, T.R. Lakshmeesha, B. Singh, N.K. Kalagatur, S.R. Niranjana, A. Hashem, A.A. Alqarawi, B. Tabassum, E.F. Abd-Allah, S. Chandra Nayaka, and R.K. Srivastava. 2019. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity – A review. Saudi J. Biol. Sci. 26(7), 1315-1324. Doi: 10.1016/j.sjbs.2019.06.002

Steel, R.G.D. and J.H. Torrie. 1997. Principles and procedures of statistics. A biometrical approach. 3rd ed. McGraw-Hill, New York, NY.

Tonk, F.A., E. Ilker, and M. Tosun. 2011. Evaluation of genotype x environment interactions in maize hybrids using GGE biplot analysis. Crop. Breed. Appl. Biot. 11(1), 1-9. Doi: 10.1590/S1984-70332011000100001

Wardofa, G., D. Asnake, and H. Mohammed. 2019. GGE biplot analysis of genotype-by-environment interaction and grain yield stability of bread wheat genotypes in South Tigray, Ethiopia. J. Plant Breed. Genet. 7(2), 75-85. Doi: 10.33687/pbg.007.02.2846

Weinert, C.H., F. Sonntag, B. Egert, E. Pawelzik, S.E. Kulling, and I. Smit. 2021. The effect of potassium fertilization on the metabolite profile of tomato fruit (Solanum lycopersicum L.). Plant Physiol. Biochem. 159, 89-99. Doi: 10.1016/j.plaphy.2020.12.010

Woldemariam, S.H., S. Lal, D.Z. Zelelew, and M.T. Solomon. 2018. Effect of potassium levels on productivity and fruit quality of tomato (Lycopersicon esculentum L.). J. Agric. Stud. 6(1), 104. Doi: 10.5296/jas.v6i1.12262

Zakher, A.G., S.A.A. Abu El-kasem, and F.H. Ayoub. 2016. Assessment of the stability and adaptability of some newly promising tomato (Solanum lycopersicum L.) lines under different environmental conditions. J. Plant Prod. Mansoura Univ. 7(12), 1331-1337. Doi: 10.21608/jpp.2016.47031

Zayed, A.A., F.A. Helal, and S.T. Farag. 2005. The genetic performance of some continuously variable characteristics of pea under different locations. Ann. Agric. Sci. Moshtohor. 43(1), 337-346.

Zörb, C., M. Senbayram, and E. Peiter. 2014. Potassium in agriculture – status and perspectives. J. Plant Physiol. 171(9), 656-669. Doi: 10.1016/j.jplph.2013.08.008


Download data is not yet available.