Skip to main navigation menu Skip to main content Skip to site footer

Nitrogen-fixing bacteria and nitrogen fertilization on economic feasibility of tomato

Tomato crop under semi-controlled conditions Photo: A. Gómez.


To increase the availability of nutrients and improve crop productivity, chemical fertilizers are introduced to the soil, although the biological fixation of nitrogen contributes globally with 180 million metric tons of ammonia per year, which is comparable to current contribution of anthropogenic nitrogen. In this way, the present study aimed to evaluate the effect of the interaction of Azospyrillum brasilense and Bradyrhizobium japonicum with different levels of nitrogen on the yield and economic viability of the tomato crop. An experimental design of divided plots was used, with the nitrogen fertilization dose being the largest plot (100% of the dose, 50% of the dose and 0% of the dose) and the minor plot of nitrogen-fixing bacteria (100 cc ha-1, 200 cc ha-1, 300 cc ha-1) with four random internal blocks and five plants as experimental unit. The variables evaluated were: production per plant, yield/ha, number of fruits/plant and average fruit weight. Finally, the economic analysis was performed according to the combination of the treatments. The results obtained showed that the mixture of nitrogen-fixing bacteria (BFN) (Azospyrillum brasilense and Bradyrhizobium japonicum) at a dose of 100 cc ha-1, significantly increased tomato production when nitrogen (urea) was not applied. The application of BFN in combination with adequate levels of nitrogen favors the sustainability of the tomato.


Biofertilizers, Sustainable agriculture, Biological nitrogen fixation, Climate change



  • Baena, D., F. Vallejo, and E. Estrada. 2003. Avance generacional y selección de líneas promisorias de tomate (Lycopersicon esculentum Mill.) tipos chonto y milano. Acta Agron. 52(1), 1-9.
  • Beneduzi, A., F. Moreira, P.B. Costa, L.K. Vargas, B.B. Lisboa, R. Favreto, J.I. Baldani, and L.M.P. Passaglia. 2013. Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the South of Brazil. Appl. Soil Ecol. 63, 94-104. Doi:
  • Benintende, S., W. Uhrich, M. Herrera, F. Gangge, M. Sterren, and M. Benintende. 2010. Comparación entre coinoculación con Bradyrhizobium japonicum y Azospirillum brasilensee inoculación simple con Bradyrhizobium japonicum en la nodulación, crecimiento y acumulación de N en el cultivo de soja. Agriscientia 27(2), 71-77.
  • Bhardwaj, D., M.W. Ansari, R.K. Sahoo, and N. Tuteja. 2014. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb. Cell Fact. 13, 66. Doi:
  • Burbano, E. and F.A. Vallejo. 2017. Producción de líneas de tomate “chonto”, Solanum lycopersicum Mill., con expresión del gen sp responsable del crecimiento determinado. Rev. Colomb. Cienc. Hortic. 11(1), 63-71. Doi:
  • Ceballos, N. and F.A. Vallejo. 2012. Evaluating the fruit production and quality of cherry tomato (Solanum lycopersicum var. cerasiforme). Rev. Fac. Nac. Agr. Medellín 65(2), 6593-6604.
  • Ceballos-Aguirre, N., G.M. Restrepo, A. Hurtado-Salazar, J.A. Cuellar, and O.J. Sánchez. 2022. Economic feasibility of Gluconacetobacter diazotrophicus in carrot cultivation. Rev. Ceres 69(1), 40-47. Doi:
  • Chattopadhyay, P., G. Banerjee, and P.J. Handique. 2022. Use of an abscisic acid-producing Bradyrhizobium japonicum isolate as biocontrol agent against bacterial wilt disease caused by Ralstonia solanacearum. J. Plant Dis. Prot. 2022. Doi:
  • Colombia DANE, Departamento de Administrativo Nacional de Estadística. 2021. Sistema de Información de Precios y Abastecimiento del Sector Agropecuario (SIPSA). In:; consulted: october, 2021.
  • FAO. 2017. The future of food and agriculture – Trends and challenges. FAO, Rome.
  • Fornasero, V.L. and M.A. Toniutti. 2015. Evaluación de la nodulación y rendimiento del cultivo de soja con la aplicación de distintas formulaciones de inoculantes. FAVE Secc. Cienc. Agrar. 14(1), 79-90. Doi:
  • Garzón, J.E. and E.A. Cárdenas. 2013. Emisiones antropogénicas de amoniaco, nitratos y óxido nitroso: compuestos nitrogenados que afectan el medio ambiente en el sector agropecuario colombiano. Rev. Fac. Med. Vet. Zoot. 60(2), 121-138.
  • HAIFA. 2021. Recomendaciones nutricionales para tomate en campo abierto, acolchado o túnel e invernadero . In:; consulted: October, 2021.
  • Herrera, H.J., A. Hurtado-Salazar, and N. Ceballos-Aguirre. 2016. Estudio técnico y económico del tomate tipo cereza élite (Solanum lycopersicum L. var. cerasiforme) bajo condiciones semicontroladas. Rev. Colomb. Cienc. Hortic. 9(2), 290-300. Doi:
  • Hou, E., C. Chen, M.E. McGroddy, and D. Wen. 2012. Nutrient limitation on ecosystem productivity and processes of mature and old-growth subtropical forests in China. PLoS ONE 7(12), e52071. Doi:
  • Jaramillo, J.E., G.D. Sánchez, V.P. Rodríguez, P.A. Agular, L.F. Gil, L.M. Pinzón, M.C. García, M.A. Zapata, J.C. Hío, J.F. Restrepo, D. Quevedo, and M. Guzmán. 2012. Tecnología para el cultivo de tomate bajo condiciones protegidas. CORPOICA, Bogota.
  • Jiaying, M.A., C. Tingting, L. Jie, F. Weimeng, F. Baohua, L. Guangyan, L. Hubo, L. Juncai, W. Zhihai, T. Longxing, and F. Guanfu. 2022. Functions of nitrogen, phosphorus and potassium in energy status and their influences on rice growth and development. Rice Sci. 29(2), 166-178. Doi:
  • Moya, C., M. Álvarez, D. Plana, M. Florido, and C.J.B. Lawrence. 2005. Evaluación y selección de nuevas líneas de tomate (Lycopersicon esculentum Mill.) con altos rendimientos y frutos de alta calidad. Cult. Trop. 26(3), 39-43.
  • Okumoto, S. and G. Pilot. 2011. Amino acid export in plants: a missing link in nitrogen cycling. Mol. Plant 4(3), 453-463. Doi:
  • Pérez-Rodriguez, M.M., M. Pontin, V. Lipinski, R. Bottini, P. Piccoli, and A.C. Cohen. 2020. Pseudomonas fluorescens and Azospirillum brasilense increase yield and fruit quality of tomato under field conditions. J. Soil Sci. Plant Nutr. 20, 1614-1624. Doi:
  • Rees, D.C., F.A. Tezcan, C.A. Haynes, M.Y. Walton, S. Andrade, O. Einsle, and J.B. Howard. 2005. Structural basis of biological nitrogen fixation. Phil. Trans. R. Soc. A. 363(1829), 971-984. Doi:
  • Restrepo, G.M., O.J. Sanchez, S.M. Marulanda, N.F. Galeano, and G. Taborda. 2017. Evaluation of plant-growth promoting properties of Gluconacetobacter diazotrophicus and Gluconacetobacter sacchari isolated from sugarcane and tomato in West Central region of Colombia. Afr. J. Biotechnol. 16(30), 1619-1629. Doi:
  • Sanjuán, J. and N. Moreno. 2010. Aplicación de insumos biológicos: una oportunidad para la agricultura sostenible y amigable con el medioambiente. Rev. Colomb. Biotecnol. 12(1), 4-7.
  • Singh, J.S., V.C. Pandey, and D.P. Singh. 2011. Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric. Ecosyst. Environ. 140(3-4), 339-353. Doi:
  • Suárez, O., A. Hurtado-Salazar, and N. Ceballos-Aguirre. 2018. Número de racimos y la sostenibilidad económica del tomate bajo condiciones semicontroladas. Temas Agrarios 23(1), 55-61. Doi:
  • Sumraj, and L.P. Padhye. 2017. Influence of surface chemistry of carbon materials on their interactions with inorganic nitrogen contaminants in soil and water. Chemosphere 184, 532-547. Doi:


Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.