Estimating genotype-environment interactions for internal fruit quality traits in cherry tomatoes

Main Article Content


Nelson Ceballos-Aguirre
Franco Alirio Vallejo-Cabrera
Yacenia Morillo-Coronado


Genotype-environment interactions (GEI) were assessed in 10 cherry tomato accessions in nine environments, including four artificial settings (0, 60 120, and 180 kg ha-1 of potassium) established on the experimental farms Montelindo (Palestina), Tesorito (Manizales), and CEUNP (Palmira) (Colombia). The plant material included 10 cherry tomato genotypes obtained from the germplasm bank at the Instituto Agronómico de Campinas and Tomato Genetics Resources Center (TGRC). A completely randomized block design with four blocks corresponding to the level of potassium fertilization was used (0, 60, 120, 180 kg ha-1); 0 kg ha-1 was the level reported for the soil. The effective size of the experiment unit was seven plants; the plot included the five central plants. A distance of 1.5 m between rows, 0.50 m between plants, and 2 m between blocks was used. The contents of soluble solids (°Brix), vitamin C (mg/100 g fresh weight), and lycopene (µg g-1 fresh weight) were assessed. The analysis of variance (ANOVA) showed significant differences (P<0.01) between the tomato genotypes, environments, and G×E interactions for the three assessed traits . The AMMI analysis identified similar and contrasting environments and determined the genotypes that contributed the most to the GEI. The environments with 120 and 180 kg ha-1 potassium favored the expression of vitamin C, while Palmira favored the lycopene content. The findings are useful for identifying optimal locations and elite genotypes that can be used as sources of variability in fruit quality improvement programs for cherry tomatoes.


Article Details


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The copyright of the articles and illustrations are the property of the Revista Colombiana de Ciencias Hortícolas. The editors authorize the use of the contents under the Creative Commons license Attribution-Noncommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). The correct citation of the content must explicitly register the name of the journal, name (s) of the author (s), year, title of the article, volume, number, page of the article and DOI. Written permission is required from publishers to publish more than a short summary of the text or figures.


Abd El-Latif, K.M., E.A.M. Osman, R. Abdullah, and N.A. Kader. 2011. Response of potato plants to potassium fertilizer rates and soil moisture deficit. Adv. Appl. Sci. Res. 2, 388-397.

Ahmad, N., M. Sarfraz, U. Farooq, M. Arfan-ul-Haq, M.Z. Mushtaq, and M.A. Ali. 2015. Effect of potassium and its time of application on yield and quality of tomato. Int. J. Sci. Res. Pub. 5(9), 1-4.

Al-Moshileh, A.M., M.A. Errebhi, and H.A. Obiadalla-Ali. 2017. Effect of potassium fertilization on tomato and cucumber plants under greenhouse conditions. Biosci. Res. 14(1), 68-74.

Amjad, M., J. Akhtar, M. Anwar-Ui-Haq, S. Imran, and S. Jacobsen. 2014. Soil and foliar application of potassium enhances fruit yield and quality of tomato under salinity. Turk. J. Biol. 38, 208-218. Doi: 10.3906/biy-1305-54

Armita, D., A.P. Rahayu, M.D. Maghfoer, and D.A.F. Fuadi. 2017. Effect of potassium fertilization on the yield and quality of two tomato varieties. Biosci. Res. 14(4), 1150-1155.

Bai, Y. and P. Lindhout. 2007. Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann. Bot. 100(5), 1085-1094. Doi: 10.1093/aob/mcm150

Balibrea, M.E., C. Martínez-Andújar, J. Cuartero, M.C. Bolarín, and F. Pérez-Alfocea. 2006. The high fruit soluble sugar content in wild Lycopersicon species and their hybrids with cultivars depends on sucrose import during ripening rather than on sucrose metabolism. Funct. Plant Biol. 33(3), 279-288. Doi: 10.1071/FP05134

Ballon-Landa, E. and J.K. Parsons. 2018. Nutrition, physical activity, and lifestyle factors in prostate cancer prevention. Curr. Opin. Urol. 28, 55-61. Doi: 10.1097/MOU.0000000000000460

Balzarini, M.G. and J.A. Di Rienzo. 2003. Infogen: Software para análisis estadísticos de marcadores genéticos. Facultad de Ciencias Agropecuarias. Universidad Nacional de Córdoba, Cordoba, Argentina.

Böhm, V. 2004. Effects of agronomic practices and processing conditions on tomato ingredients. pp. 37-46. In: Dris, R. and S.M. Jain (eds.). Production practices and quality assessment of food crops. Preharvest Practice 1. Doi: 10.1007/1-4020-2533-5_2

Cantore, V., F. Boari, S. Vanadia, B. Pace, E-de Palma, L. Leo, and G. Zacheo. 2008. Evaluation of yield and qualitative parameters of high lycopene tomato cultivars. Acta Hortic. 789, 173-180. Doi: 10.17660/ActaHortic.2008.789.24

Caretto, S., A. Parente, F. Serio, and P. Santamaria. 2008. Influence of potassium and genotype on vitamin E content and reducing sugar of tomato fruits. HortScience 43(7), 2048-2051. Doi: 10.21273/HORTSCI.43.7.2048

Cebolla-Cornejo, J., S. Rosello, M. Valcarcel, E. Serrano, J. Beltran, and F. Nuez. 2011. Evaluation of genotype and environment effects on taste and aroma flavor components of Spanish fresh tomato varieties. J. Agr. Food Chem. 59(6), 2440-2450. Doi: 10.1021/jf1045427

Constán-Aguilar, C., R. Leyva, L. Romero, T. Soriano, B. Blasco, and M. Ruiz. 2015. The effect of potassium biofortification over yield and nutritional quality of cherry tomato fruits. Am. J. Adv. Food Sci. Technol. Doi: 10.7726/ajafst.2015.1006

Constán-Aguilar, C., R. Leyva, L. Romero, T. Soriano, and J.M. Ruiz. 2014. Implication of potassium on the quality of cherry tomato fruits after postharvest during cold storage. Int. J. Food Sci. Nutr. 65(2), 203-211. Doi: 10.3109/09637486.2013.839632

Córdoba, H.A., S.V. Gómez, and C.E. Ñústez. 2018. Evaluación del rendimiento y fenología de tres genotipos de tomate cherry (Solanum lycopersicum L.) bajo condiciones de invernadero. Rev. Colomb. Cienc. Hortic. 12(1), 113-125. Doi: 10.17584/rcch.2018v12i1.7348

Crossa, J. 1990. Statistical analysis of multilocation trials. Adv. Agron. 44, 55-85. Doi: 10.1016/S0065-2113(08)60818-4

Crossa, J., H.G. Jr. Gauch, and R.W. Zobel. 1990. Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop Sci. 30(3), 493-500. Doi: 10.2135/cropsci1990.0011183X003000030003x

Dar, R.A. and J.P. Sharma. 2011. Genetic variability studies of yield and quality traits in tomato (Solanum lycopersicum L.). Int. J. Plant Breed. Genet. 5(2), 168-174. Doi: 10.3923/ijpbg.2011.168.174

Dumas, Y., M. Dadomo, G. Di Lucca, and P. Grolier. 2003. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 83(5), 369-382. Doi: 10.1002/jsfa.1370

Fanasca, S., G. Colla, G. Maiani, E. Venneria, Y. Rouphael, E. Azzini, and F. Saccardo. 2006. Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition. J. Agric. Food Chem. 54(12), 4319-4325. Doi: 10.1021/jf0602572

FAOSTAT. 2019. Value of agricultural production. In:; consulted: November, 2019.

García, M., I. Escobar, and J. Berenguer. 2012. Flavoured tomatoes in soilless culture. Acta Hortic. 927, 481-487. Doi: 10.17660/ActaHortic.2012.927.61

Gest, N., H. Gautier, and R. Stevens. 2013. Ascorbate as seen through plant evolution: The rise of a successful molecule? J. Exp. Bot. 64(1), 33-53. Doi: 10.1093/jxb/ers297

Havlin, J.L., J.D. Beaton, S.L. Tisdale, and W.L. Nelson. 2005. Soil fertility and fertilizers: An introduction to nutrient management. 7th ed. Pearson Educational, Franklin Lakes, NJ.

Hernández-Pérez, O.I., L.A. Valdez-Aguilar, I. Alia-Tejacal, A.D. Cartmill, and D.L. Cartmill. 2019. Tomato fruit yield, quality, and nutrient status in response to potassium: calcium balance and electrical conductivity in the nutrient solution. J. Soil Sci. Plant Nutr. 1-9. Doi: 10.1007/s42729-019-00133-9

Hortelano, R., H.E. Villaseñor, E. Martínez, M.F. Rodríguez, E. Espitia, and L.A. Mariscal. 2013. Estabilidad de variedades de trigo recomendadas para siembras de temporal en los Valles Altos de la Mesa Central. Rev. Mex. Cienc. Agríc. 4(5), 713-725. Doi: 10.29312/remexca.v4i5.1170

IPGRI, International Plant Genetic Resources Institute. 1996. Descriptores para el cultivo del tomate (Lycopersicon spp.). IPGRI, Rome.

Javaria, S., M.Q. Khan, and I. Bakhsh. 2012. Effect of potassium on chemical and sensory attributes of tomato fruit. J. Anim. Plant Sci. 22, 1081-1085.

Kanai, S., K. Ohkura, J.J. Adu-Gyamfi, P.K. Mohapatra, N.T. Nguyen, H. Saneoka, and K. Fujita 2007. Depression of sink activity precedes the inhibition of biomass production in tomato plants subjected to potassium deficiency stress. J. Exp. Bot. 58, 2917-2928. Doi: 10.1093/jxb/erm149

Kaur, H., S. Bedi, V.P. Sethi, and A.S. Dhatt. 2018: Effects of substrate hydroponic systems and different N and K ratios on yield and quality of tomato fruit. J. Plant Nutr. 41(12), 1547-1554. Doi: 10.1080/01904167.2018.1459689

Khan, A.A., M. Sajid, A. Rab, S. Alam, and A. Bari. 2014. Effect of potassium sources on the growth, yield and fruit quality of tomato cultivars. Sarhad J. Agric. 30(4), 442-450.

Leyva, R., C. Constán-Aguilar, B. Blasco, E. Sánchez-Rodríguez, L. Romero, T. Soriano, and J.M. Ruíz. 2013. Effects of climatic control on tomato yield and nutritional quality in Mediterranean screenhouse. J. Sci. Food Agric. 94(1), 63-70. Doi: 10.1002/jsfa.6191

Luna-Guevara, M. and A. Delgado-Alvarado. 2014. Importancia, contribución y estabilidad de antioxidantes en frutos y productos de tomate (Solanum lycopersicum L.). Avan. Inv. Agropec. 18(1), 51-66.

Machado, J., L.T. Braz, and G.V. Grilli. 2003. Desempenho de produção de cultivares de tomateiro tipo Cereja em diferentes espaçamentos. Hortic. Bras. 21(Supl. 2), 356-356.

Martí, R., M. Leiva-Brondo, I. Lahoz, C. Campillo, J. Cebolla-Cornejo, and S. Roselló. 2018. Polyphenol and l-ascorbic acid content in tomato as influenced by high lycopene genotypes and organic farming at different environments. Food Chem. 239, 148-156. Doi: 10.1016/j.foodchem.2017.06.102

Masheva, S. 2014. Recent trends of the breeding programs in main vegetables and potatoes in Bulgaria. J. Hort. 1, 1-3. Doi: 10.4172/2376-0354.1000e102

Nagata, M. and I. Yamashita. 1992. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. J. Jpn. Soc. Food Sci. 39, 925-928. Doi: 10.3136/nskkk1962.39.925

Ozturk, B. and H. Ozer. 2019. Effects of grafting and green manure treatments on postharvest quality of tomatoes. J. Soil Sci. Plant Nutr. 19, 1-13. Doi: 10.1007/s42729-019-00077-0

Panthee, D.R., C.X. Cao, S.J. Debenport, G.R. Rodriguez, J.A. Labate, L.D. Robertson, A.P. Breksa, E.V.D. Knaap, and B.B.M. Gardener. 2012. Magnitude of genotype x environment interactions affecting tomato fruit quality. HortScience 47(6), 721-726. Doi: 10.21273/HORTSCI.47.6.721

Patel, K., A.I. Patel, D. Patel, and J.M. Vashi. 2017. Stability analysis for quality parameters in tomato (Solanum lycopersicum L.). Int. J. Chem. Stud. 5(3), 573-576.

Patil, R.B. 2011. Role of potassium humate on growth and yield of soybean and black gram. Int. J. Pharma Biosci. 2(1), 242-246.

Ramírez, S.L.F., S.F.R. Díaz, and E.J. Muro. 2012. Relation between soilless tomato quality and potassium concentration in nutritive solution. Acta Hortic. 947, 215-222. Doi: 10.17660/ActaHortic.2012.947.26

Rebouças Neto, M.O., B.M. Azevedo, T.V.A. Viana, J.B.R. Mesquita, M.A.R. Carvalho, and L.C.C. Carvalho. 2016. Potassium fertilization via fertigation and conventional application on quality of tomato fruits. Rev. Bras. Eng. Agríc. Ambient. 20(10), 913-917. Doi: 10.1590/1807-1929/agriambi.v20n10p913-917

Rodriguez-Amaya, D.B. 2001. A guide to carotenoid analysis in foods. ILSI Human Nutrition Institute; One Thomas Circle, Washington, DC.

Rosales, M.A., L.M. Cervilla, J.J. Ríos, B. Blasco, E. Sánchez-Rodríguez, L. Romero, and J.M. Ruiz. 2009. Environmental conditions affect pectin solubilization in cherry tomato fruits grown in two experimental Mediterranean greenhouses. Environ. Exp. Bot. 67, 320-327. Doi: 10.1016/j.envexpbot.2009.07.011

Roselló, S., L. Galiana-Balaguer, and F. Nuez. 2000. Sources of high soluble solid and vitamin C content from Lycopersicon pimpinellifolium are interesting in breeding for internal quality of fresh market tomato. Tomato Genet. Coop. Rep. 50, 30-33.

Sánchez, A., E.F. Borrego, V.V. Zamora, C.J. Sánchez, and R.F. Castillo. 2015. Estimación de la interacción genotipo-ambiente en tomate (Solanum lycopersicum L.) con el modelo AMMI. Rev. Mex. Cienc. Agric. 6(4), 763-778. Doi: 10.29312/remexca.v6i4.617

Savale, S.V. and A.I. Patel. 2017. Stability analysis for yield and quality attributes in tomato (Solanum lycopersicum L.). J. Pharmacogn. Phytochem. 6(6), 637-642.

Schwarz, D., G.B. Öztekin, Y. Tüzel, B. Brückner, and A. Krumbein. 2013. Rootstocks can enhance tomato growth and quality characteristics at low potassium supply. Sci Hortic. 149, 70-79. Doi: 10.1016/j.scienta.2012.06.013

Shahidi, F., A. Chandrasekara, and Y. Zhong. 2011. Bioactive phytochemicals in vegetables. pp. 125-158. In: Handbook of vegetables and vegetable processing. Vol. 1. Doi: 10.1002/9780470958346.ch6

Spaldon, S., R.K. Samnotra, R. Dolkar, and D. Choudhary. 2017. Stability analysis and genotype x environment interaction of quality traits in tomato (Solanum lycopersicum L.). Int. J. Curr. Microbiol. Appl. Sci. 6(2), 1506-1515. Doi: 10.20546/ijcmas.2017.602.168

Taber, H., P. Perkins-Veazie, S. Li, W. White, S. Rodermel, and Y. Xu. 2008. Enhancement of tomato fruit lycopene by potassium is cultivar dependent. HortScience 43(1), 159-165. Doi: 10.21273/HORTSCI.43.1.159

Tavallali, V., S. Esmaili, and S. Karimi. 2018. Nitrogen and potassium requirements of tomato plants for the optimization of fruit quality and antioxidative capacity during storage. J. Food Meas. Charact. 12(2), 755-762. Doi: 10.1007/s11694-017-9689-9

Wang, Y., R. Liu, S. Huang, and J. Jin. 2009. Effects of potassium application on flavor compounds of cherry tomato fruits. J. Plant Nutr. 32(9), 1451-1468. Doi: 10.1080/01904160903092663

Woldemariam, S.H., S. Lal, D.Z. Zelelew, and M.T. Solomon. 2018. Effect of potassium levels on productivity and fruit quality of tomato (Lycopersicon esculentum L.). J. Agric. Stud. 6(1), 104. Doi: 10.5296/jas.v6i1.12262

Wuzhong, N. 2002. Yield and quality of fruits of solanaceous crops as affected by potassium fertilization. Better Crops Int. 16(1), 6-8.

Zhao, X., Y. Liu, X. Liu, and J. Jian. 2018: Comparative transcriptome profiling of two tomato genotypes in response to potassium-deficiency stress. Int. J. Mol. Sci. 19(8), 2402. Doi: 10.3390/ijms19082402

Zörb, C., M. Senbayram, and E. Peiter. 2014. Potassium in agriculture – status and perspectives. J. Plant Physiol. 171(9), 656-669. Doi: 10.1016/j.jplph.2013.08.008


Download data is not yet available.