Could the production region influence the quality and antioxidant activity of cashew apple?

Authors

DOI:

https://doi.org/10.17584/rcch.2022v16i3.15108

Keywords:

Anacardium occidentale L., Post-harvest, Bioactive compounds, Climatic elements

Abstract

Given the scarcity of research related to the interference of the climatic elements under the qualitative characteristics of the cashew apples, this work had the objective of evaluating the quality and total antioxidant activity of cashew apple of dwarf cashew in different climatic conditions. The experimental design was completely randomized, in a factorial scheme with repeated measurement in time, with three clones (CCP 09, BRS 265 and PRO 555-1) in two regions, cearense semiarid, sertão (Alto Santo – CE) and a coast (Beberibe – CE), with four replications and evaluated in different years. In the laboratory, the fruits were processed to obtain the pulp and evaluated for: soluble solids (SS, °Brix), titratable acidity (TA, % malic acid), SS/TA, soluble sugars (AS, % glucose), vitamin C (mg/100 g), total extractable polyphenols (TEP, mg L-1), cinnamic acid (CA, mg L-1), transcinnamoyl glycoside (TG, mg L-1) and total antioxidant activity (TAA, μmol Trolox/g). It was observed highest values of SS, TA, AS, vitamin C, TG, TEP and TAA obtained in cashew apple in the sertão. The ‘CCP 09’ showed higher quality to the others, responding in a positive way to the variations of environments conditions. The quality and antioxidant activity of cashew apple are influenced by the climatic elements of each region, as well as the year of production and the genotype. The antioxidant activity attributed to the cashew apple showed to be more strongly related to TEP and transcinnamoyl glycoside content.

Downloads

Download data is not yet available.

References

Abdullah, S., R.C. Pradhana, and S. Mishra. 2021. Effect of cellulase and tannase on yield, ascorbic acid and other physicochemical properties of cashew apple juice. Fruits 76, 51-60. Doi: https://doi.org/10.17660/th2021/76.2.1

Adisakwattana, S., W. Sompong, A. Meeprom, S. Ngamukote, and S. Yibchok-Anun. 2012. Cinnamic acid and its derivatives inhibit fructose-mediated protein glycation. Int. J. Mol. Sci. 13(2), 1778-1789. Doi: https://doi.org/10.3390/ijms13021778

Almeida, M.L.B., W.E.S. Freitas, P.L.D. Morais, J.D.A. Sarmento, and R.E. Alves. 2016. Bioactive compounds and antioxidant potential fruit of Ximenia americana L. Food Chem. 192, 1078-1082. Doi: https://doi.org/10.1016/j.foodchem.2015.07.129

Almeida, M.L.B., C.F.H. Moura, R. Innecco, and M.R.S. Silveira. 2018. Physical characteristics of cashew apples from dwarf cashew (Anacardium occidentale L.) clones as a function of environmental and temporal variation. Rev. Colomb. Cienc. Hortic. 12, 41-49. Doi: https://doi.org/10.17584/rcch.2018v12i1.7509

AOAC, Association of Official Analytical Chemists. 2005. Official methods of analysis of the association of official analytical chemists. 18th ed. Washington, DC.

Beckles, D.M. 2012. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 63, 129-140. Doi: https://doi.org/10.1016/j.postharvbio.2011.05.016

Brito, E.S., M.C.P. Araújo, L. Lin, and J. Haenly. 2007. Determination of the flavonoid componentes of cashew apple (Anacardium occidentale) by LC-DAD-EIS/MS. Food Chem. 105, 1112-1118. Doi: https://doi.org/10.1016/j.foodchem.2007.02.009

Das, I. and A. Arora. 2017. Post-harvest processing technology for cashew apple – A review. J. Food Eng. 194, 87-98. Doi: https://doi.org/10.1016/j.jfoodeng.2016.09.011

Emelike, N.J.T. and P.C. Obinna-Echem. 2020. Effect of pasteurization and storage temperatures on the physicochemical properties and microbiological quality of cashew apple juice. Am. J. Food Sci. Technol. 8, 63-69. Doi: https://doi.org/10.12691/ajfst-8-2-4

Figueirêdo, M.C.B., J. Potting, L.A.L. Serrano, M.A. Bezerra, V.S. Barros, R.S. Gondim, and T. Nemecek. 2016. Environmental assessment of tropical perennial crops: the case of the Brazilian cashew. J. Cleaner Prod. 112, 131-140. Doi: https://doi.org/10.1016/j.jclepro.2015.05.134

Funceme. 2015. Calendário das chuvas no estado do Ceará. In: http://www.funceme.br/index.php/areas/tempo/calendariodaschuvas; consulted: January, 2015.

Gao, H., Z.K. Zhang, H.K. Chai, N. Cheng, Y. Yang, D.N. Wang, T. Yang, and W. Cao. 2016. Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biol. Technol. 118, 103-110. Doi: https://doi.org/10.1016/j.postharvbio.2016.03.006

Gordon, A., M. Friedrich, V.M. Matta, C.F.H. Moura, and F. Marx. 2012. Changes in phenolic composition, ascorbic acid and antioxidante capacity in cashew apple (Anacardium occidentale L.) during ripening. Fruits 67, 267-276. Doi: https://doi.org/10.1051/fruits/2012023

Hu, Y., C.-M. Chen, L. Xu, Y. Cui, X.-Y. Yu, H.-J. Gao, Q. Wang, K. Liu, Y. Shi, and Q.-X. Chen. 2015. Postharvest application of 4-methoxy cinnamic acid for extending the shelf life of mushroom (Agaricus bisporus). Postharvest Biol. Technol. 104, 33-41. Doi: https://doi.org/10.1016/j.postharvbio.2015.03.007

Lado, J., M.J. Rodrigo, and L. Zacarías. 2014. Maturity indicators and citrus fruit quality. Stewart Postharvest Rev. 2, 2.

Larrauri, J.A., P. Rupérez, and F. Saura-Calixo. 1997. Effect of drying temperature on the stabilitity of polyphenols and antioxidant activity of red grape pomace peels. J. Agric. Food Chem. 45, 1390-1393. Doi: https://doi.org/10.1021/jf960282f

Lopes, M.M.A., M.R.A. Miranda, C.F.H. Moura, and J. Enéas Filho. 2012. Bioactive compounds and total antioxidant capacity of cashew apples (Anacardium occidentale L.) during the ripening of early dwarf cashew clones. Cienc. Agrotecnol. 36, 325-332. Doi: https://doi.org/10.1590/S1413-70542012000300008

Luengo-Fereira, A.J. and J.D. Hernández-Varela. 2021. Relationship between color and physico-chemical properties of cashew apple (Anacardium occidentale L.) at different days of storage. Rev. Fac. Nac. Agron. Medellin 74, 9593-9602. Doi: https://doi.org/10.15446/rfnam.v74n2.90073

Machado, M., C. Felizardo, A.A.F. Silva, F.M. Nunes, and A. Barros. 2013. Polyphenolic compounds, antioxidante activity and L-phenylalanine ammonia-lyase activity during ripening of olive cv. “Cobrançosa” under different irrigation regimes. Food Res. Int. 51, 412-421. Doi: https://doi.org/10.1016/j.foodres.2012.12.056

Maro, L.A.C., R. Pio, M.N.S. Guedes, C.M.P. Abreu, and P.H.A. Moura. 2014. Environmental and genetic variation in the post-harvest quality of raspberries in subtropical areas in Brazil. Acta Sci. Agron. 36, 323-328. Doi: https://doi.org/10.4025/actasciagron.v36i3.18050

Mikulic-Petkovsek, M., V. Schmitzer, A. Slatnar, F. Stampar, and R.A. Veberic. 2015. A comparison of fruit quality parameters of wild bilberry (Vaccinium myrtillus L.) growing at different locations. J. Sci. Food Agric. 95, 776-785. Doi: https://doi.org/10.1002/jsfa.6897

Ndiaye, L., M.M. Charahabil, L. Niang, A. Diouf, K.M.O. Thiocone, N.C. Ayessou, and M. Diatta. 2022. Physicochemical, biochemical and antioxidant potential characterisation of cashew apple (Anacardium occidentale L.) from the agro-ecological zone of Casamance (Senegal). Food Nutr. Sci. 13, 439-452. Doi: https://doi.org/10.4236/fns.2022.134032

Obanda, M., P.O. Owuor, and S.J. Taylor. 1997. Flavonol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas. J. Sci. Food Agric. 74, 209-215. Doi: https://doi.org/10.1002/(SICI)1097-0010(199706)74:2<209::AID-JSFA789>3.0.CO;2-4

Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231-1237. Doi: https//doi.org/10.1016/s0891-5849(98)00315-3

Ribeiro, P.F.A., P.C. Stringheta, E.B. Oliveira, A.C. Mendonça, and H.M.P. Sant’Ana. 2016. Teor de vitamina C, β-caroteno e minerais em camu-camu cultivado em diferentes ambientes. Cienc. Rural 46, 567-572. Doi: https://doi.org/10.1590/0103-8478cr20150024

Senica, M., M. Bavec, F. Stampar, and M. Mikulic-Petkovsek. 2018. Blue honeysuckle (Lonicera caerulea subsp. edulis (Turcz. ex-Herder) Hultén.) berries and changes in their ingredients across different locations. J. Sci. Food Agric. 98, 3333-3342. Doi: https//doi.org/10.1002/jsfa.8837

Silva, J.E.B., J. Dantas Neto, J.P Gomes, J.L. Maciel, M.M. Silva, and R.D. Lacerda. 2008. Avaliação do ºBrix e pH de frutos da goiabeira em função de lâminas de água e adubação nitrogenada. Rev. Bras. Prod. Agroind. 10, 43-52. Doi: https://doi.org/10.15871/1517-8595/rbpa.v10n1p43-52

Souza, K.O., A.G. Silveira, M.M.A. Lopes, C.F.H. Moura, E.O. Silva, J.F. Ayala-Zavala, L.S.P. Soares, and M.R.A. Miranda. 2019. AVG and GA3 prevent preharvest fruit drop and enhance postharvest quality of ‘BRS 189’ cashew. Sci. Hortic. 257, 1-8. Doi: https://doi.org/10.1016/j.scienta.2019.108771

Souza, K.O., R.M. Viana, L.S. Oliveira, C.F.H. Moura, and M.R.A. Miranda. 2016. Preharvest treatment of growth regulators influences postharvest quality and storage life of cashew apples. Sci. Hortic. 209, 53-60. Doi: https://doi.org/10.1016/j.scienta.2016.06.006

Souza, K.O., C.V. Xavier, M.M.A. Lopes, C.F.H. Moura, E.O. Silva, J.F. Ayala-Zavala, L.S.P. Soares, and M.R.A. Miranda. 2018. Preharvest treatment with 1-aminoethoxyvinylglycine and gibberellin on the quality and physiology of cashew peduncles. Pesq. Agropec. Bras. 53, 684-692. Doi: https://doi.org/10.1590/S0100-204X2018000600004

Strohecker, R. and H.M. Henning. 1967. Análisis de vitaminas: métodos comprobados. Paz Montalvo, Madrid.

Szeleszczuk, L., D.M. Pisklak, M. Zielinska-Pisklak, and I. Wawer. 2016. Effects of structural differences on the NMR chemical shifts in cinnamic acid derivatives: Comparison of GIAO and GIPAW calculations. Chem. Phys. Lett. 653, 35-41. Doi: https://doi.org/10.1016/j.cplett.2016.04.075

Yemn, E.W. and A.J. Willis. 1954. The estimation of carbohydrate in plant extracts by anthrone. Biochem. J. 57, 508-514. Doi: https://doi.org/10.1042/bj0570508

Cashews from different clones in the two regions of Ceará, Brazil. Photo: M.L.B. Almeida.

Downloads

Published

2022-09-01
Metrics
Views/Downloads
  • Abstract
    46
  • PDF
    59

How to Cite

Almeida, M L B, Moura, C F H, Innecco, R, Silveira, M R S da, & Brito, E S D. (2022). Could the production region influence the quality and antioxidant activity of cashew apple?. Revista Colombiana de Ciencias Hortícolas, 16(3), e15108. https://doi.org/10.17584/rcch.2022v16i3.15108

Issue

Section

Fruits section