Skip to main navigation menu Skip to main content Skip to site footer

Could the production region influence the quality and antioxidant activity of cashew apple?

Supporting Agencies
CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico

Cashews from different clones in the two regions of Ceará, Brazil. Photo: M.L.B. Almeida.

Abstract

Given the scarcity of research related to the interference of the climatic elements under the qualitative characteristics of the cashew apples, this work had the objective of evaluating the quality and total antioxidant activity of cashew apple of dwarf cashew in different climatic conditions. The experimental design was completely randomized, in a factorial scheme with repeated measurement in time, with three clones (CCP 09, BRS 265 and PRO 555-1) in two regions, cearense semiarid, sertão (Alto Santo – CE) and a coast (Beberibe – CE), with four replications and evaluated in different years. In the laboratory, the fruits were processed to obtain the pulp and evaluated for: soluble solids (SS, °Brix), titratable acidity (TA, % malic acid), SS/TA, soluble sugars (AS, % glucose), vitamin C (mg/100 g), total extractable polyphenols (TEP, mg L-1), cinnamic acid (CA, mg L-1), transcinnamoyl glycoside (TG, mg L-1) and total antioxidant activity (TAA, μmol Trolox/g). It was observed highest values of SS, TA, AS, vitamin C, TG, TEP and TAA obtained in cashew apple in the sertão. The ‘CCP 09’ showed higher quality to the others, responding in a positive way to the variations of environments conditions. The quality and antioxidant activity of cashew apple are influenced by the climatic elements of each region, as well as the year of production and the genotype. The antioxidant activity attributed to the cashew apple showed to be more strongly related to TEP and transcinnamoyl glycoside content.

Keywords

Anacardium occidentale L., Post-harvest, Bioactive compounds, Climatic elements

PDF

References

  • Abdullah, S., R.C. Pradhana, and S. Mishra. 2021. Effect of cellulase and tannase on yield, ascorbic acid and other physicochemical properties of cashew apple juice. Fruits 76, 51-60. Doi: https://doi.org/10.17660/th2021/76.2.1
  • Adisakwattana, S., W. Sompong, A. Meeprom, S. Ngamukote, and S. Yibchok-Anun. 2012. Cinnamic acid and its derivatives inhibit fructose-mediated protein glycation. Int. J. Mol. Sci. 13(2), 1778-1789. Doi: https://doi.org/10.3390/ijms13021778
  • Almeida, M.L.B., W.E.S. Freitas, P.L.D. Morais, J.D.A. Sarmento, and R.E. Alves. 2016. Bioactive compounds and antioxidant potential fruit of Ximenia americana L. Food Chem. 192, 1078-1082. Doi: https://doi.org/10.1016/j.foodchem.2015.07.129
  • Almeida, M.L.B., C.F.H. Moura, R. Innecco, and M.R.S. Silveira. 2018. Physical characteristics of cashew apples from dwarf cashew (Anacardium occidentale L.) clones as a function of environmental and temporal variation. Rev. Colomb. Cienc. Hortic. 12, 41-49. Doi: https://doi.org/10.17584/rcch.2018v12i1.7509
  • AOAC, Association of Official Analytical Chemists. 2005. Official methods of analysis of the association of official analytical chemists. 18th ed. Washington, DC.
  • Beckles, D.M. 2012. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 63, 129-140. Doi: https://doi.org/10.1016/j.postharvbio.2011.05.016
  • Brito, E.S., M.C.P. Araújo, L. Lin, and J. Haenly. 2007. Determination of the flavonoid componentes of cashew apple (Anacardium occidentale) by LC-DAD-EIS/MS. Food Chem. 105, 1112-1118. Doi: https://doi.org/10.1016/j.foodchem.2007.02.009
  • Das, I. and A. Arora. 2017. Post-harvest processing technology for cashew apple – A review. J. Food Eng. 194, 87-98. Doi: https://doi.org/10.1016/j.jfoodeng.2016.09.011
  • Emelike, N.J.T. and P.C. Obinna-Echem. 2020. Effect of pasteurization and storage temperatures on the physicochemical properties and microbiological quality of cashew apple juice. Am. J. Food Sci. Technol. 8, 63-69. Doi: https://doi.org/10.12691/ajfst-8-2-4
  • Figueirêdo, M.C.B., J. Potting, L.A.L. Serrano, M.A. Bezerra, V.S. Barros, R.S. Gondim, and T. Nemecek. 2016. Environmental assessment of tropical perennial crops: the case of the Brazilian cashew. J. Cleaner Prod. 112, 131-140. Doi: https://doi.org/10.1016/j.jclepro.2015.05.134
  • Funceme. 2015. Calendário das chuvas no estado do Ceará. In: http://www.funceme.br/index.php/areas/tempo/calendariodaschuvas; consulted: January, 2015.
  • Gao, H., Z.K. Zhang, H.K. Chai, N. Cheng, Y. Yang, D.N. Wang, T. Yang, and W. Cao. 2016. Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biol. Technol. 118, 103-110. Doi: https://doi.org/10.1016/j.postharvbio.2016.03.006
  • Gordon, A., M. Friedrich, V.M. Matta, C.F.H. Moura, and F. Marx. 2012. Changes in phenolic composition, ascorbic acid and antioxidante capacity in cashew apple (Anacardium occidentale L.) during ripening. Fruits 67, 267-276. Doi: https://doi.org/10.1051/fruits/2012023
  • Hu, Y., C.-M. Chen, L. Xu, Y. Cui, X.-Y. Yu, H.-J. Gao, Q. Wang, K. Liu, Y. Shi, and Q.-X. Chen. 2015. Postharvest application of 4-methoxy cinnamic acid for extending the shelf life of mushroom (Agaricus bisporus). Postharvest Biol. Technol. 104, 33-41. Doi: https://doi.org/10.1016/j.postharvbio.2015.03.007
  • Lado, J., M.J. Rodrigo, and L. Zacarías. 2014. Maturity indicators and citrus fruit quality. Stewart Postharvest Rev. 2, 2.
  • Larrauri, J.A., P. Rupérez, and F. Saura-Calixo. 1997. Effect of drying temperature on the stabilitity of polyphenols and antioxidant activity of red grape pomace peels. J. Agric. Food Chem. 45, 1390-1393. Doi: https://doi.org/10.1021/jf960282f
  • Lopes, M.M.A., M.R.A. Miranda, C.F.H. Moura, and J. Enéas Filho. 2012. Bioactive compounds and total antioxidant capacity of cashew apples (Anacardium occidentale L.) during the ripening of early dwarf cashew clones. Cienc. Agrotecnol. 36, 325-332. Doi: https://doi.org/10.1590/S1413-70542012000300008
  • Luengo-Fereira, A.J. and J.D. Hernández-Varela. 2021. Relationship between color and physico-chemical properties of cashew apple (Anacardium occidentale L.) at different days of storage. Rev. Fac. Nac. Agron. Medellin 74, 9593-9602. Doi: https://doi.org/10.15446/rfnam.v74n2.90073
  • Machado, M., C. Felizardo, A.A.F. Silva, F.M. Nunes, and A. Barros. 2013. Polyphenolic compounds, antioxidante activity and L-phenylalanine ammonia-lyase activity during ripening of olive cv. “Cobrançosa” under different irrigation regimes. Food Res. Int. 51, 412-421. Doi: https://doi.org/10.1016/j.foodres.2012.12.056
  • Maro, L.A.C., R. Pio, M.N.S. Guedes, C.M.P. Abreu, and P.H.A. Moura. 2014. Environmental and genetic variation in the post-harvest quality of raspberries in subtropical areas in Brazil. Acta Sci. Agron. 36, 323-328. Doi: https://doi.org/10.4025/actasciagron.v36i3.18050
  • Mikulic-Petkovsek, M., V. Schmitzer, A. Slatnar, F. Stampar, and R.A. Veberic. 2015. A comparison of fruit quality parameters of wild bilberry (Vaccinium myrtillus L.) growing at different locations. J. Sci. Food Agric. 95, 776-785. Doi: https://doi.org/10.1002/jsfa.6897
  • Ndiaye, L., M.M. Charahabil, L. Niang, A. Diouf, K.M.O. Thiocone, N.C. Ayessou, and M. Diatta. 2022. Physicochemical, biochemical and antioxidant potential characterisation of cashew apple (Anacardium occidentale L.) from the agro-ecological zone of Casamance (Senegal). Food Nutr. Sci. 13, 439-452. Doi: https://doi.org/10.4236/fns.2022.134032
  • Obanda, M., P.O. Owuor, and S.J. Taylor. 1997. Flavonol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas. J. Sci. Food Agric. 74, 209-215. Doi: https://doi.org/10.1002/(SICI)1097-0010(199706)74:2<209::AID-JSFA789>3.0.CO;2-4
  • Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231-1237. Doi: https//doi.org/10.1016/s0891-5849(98)00315-3
  • Ribeiro, P.F.A., P.C. Stringheta, E.B. Oliveira, A.C. Mendonça, and H.M.P. Sant’Ana. 2016. Teor de vitamina C, β-caroteno e minerais em camu-camu cultivado em diferentes ambientes. Cienc. Rural 46, 567-572. Doi: https://doi.org/10.1590/0103-8478cr20150024
  • Senica, M., M. Bavec, F. Stampar, and M. Mikulic-Petkovsek. 2018. Blue honeysuckle (Lonicera caerulea subsp. edulis (Turcz. ex-Herder) Hultén.) berries and changes in their ingredients across different locations. J. Sci. Food Agric. 98, 3333-3342. Doi: https//doi.org/10.1002/jsfa.8837
  • Silva, J.E.B., J. Dantas Neto, J.P Gomes, J.L. Maciel, M.M. Silva, and R.D. Lacerda. 2008. Avaliação do ºBrix e pH de frutos da goiabeira em função de lâminas de água e adubação nitrogenada. Rev. Bras. Prod. Agroind. 10, 43-52. Doi: https://doi.org/10.15871/1517-8595/rbpa.v10n1p43-52
  • Souza, K.O., A.G. Silveira, M.M.A. Lopes, C.F.H. Moura, E.O. Silva, J.F. Ayala-Zavala, L.S.P. Soares, and M.R.A. Miranda. 2019. AVG and GA3 prevent preharvest fruit drop and enhance postharvest quality of ‘BRS 189’ cashew. Sci. Hortic. 257, 1-8. Doi: https://doi.org/10.1016/j.scienta.2019.108771
  • Souza, K.O., R.M. Viana, L.S. Oliveira, C.F.H. Moura, and M.R.A. Miranda. 2016. Preharvest treatment of growth regulators influences postharvest quality and storage life of cashew apples. Sci. Hortic. 209, 53-60. Doi: https://doi.org/10.1016/j.scienta.2016.06.006
  • Souza, K.O., C.V. Xavier, M.M.A. Lopes, C.F.H. Moura, E.O. Silva, J.F. Ayala-Zavala, L.S.P. Soares, and M.R.A. Miranda. 2018. Preharvest treatment with 1-aminoethoxyvinylglycine and gibberellin on the quality and physiology of cashew peduncles. Pesq. Agropec. Bras. 53, 684-692. Doi: https://doi.org/10.1590/S0100-204X2018000600004
  • Strohecker, R. and H.M. Henning. 1967. Análisis de vitaminas: métodos comprobados. Paz Montalvo, Madrid.
  • Szeleszczuk, L., D.M. Pisklak, M. Zielinska-Pisklak, and I. Wawer. 2016. Effects of structural differences on the NMR chemical shifts in cinnamic acid derivatives: Comparison of GIAO and GIPAW calculations. Chem. Phys. Lett. 653, 35-41. Doi: https://doi.org/10.1016/j.cplett.2016.04.075
  • Yemn, E.W. and A.J. Willis. 1954. The estimation of carbohydrate in plant extracts by anthrone. Biochem. J. 57, 508-514. Doi: https://doi.org/10.1042/bj0570508

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.