Skip to main navigation menu Skip to main content Skip to site footer

Symptoms and growth components in feijoa (Acca sellowiana [O. Berg] Burret) plants in response to calcium, magnesium and boron deficiencies

Abstract

Nutrient deficiency symptoms are widely used to determine the nutrient demands of a crop and to clarify nutritional disorders, especially when they are nutrient specific. Until now, a calcium (Ca), magnesium (Mg) and boron (B) deficiency experiment has not been carried out on feijoa, and diagnostic symptoms have not been described. For this reason, 9-months-old ‘Quimba’ feijoa plants were studied using the missing nutrient method. A modified Hoagland and Arnon solution was applied for each treatment, leaving out one element in each treatment. The treatments were: (1) complete fertilization (control); (2) complete fertilization -Ca; (3) complete fertilization -Mg; (4) complete fertilization -B; and (5) without fertilization (negative control). Deficiency symptoms in the plants were described, and photographic records were made. The Ca deficiency was noted early in the shoot tips and later in fully-expanded, young leaves. The Mg-deficiency was observed in older and fully-expanded leaves, mainly as interveinal chlorosis, while the B deficiency generated a variety of symptoms, interveinal and total chlorosis in fully and not fully-expanded leaves and a mosaic of symptoms in adult leaves. For the growth components, the Mg deficiency reduced the number of apical shoots, while the Ca- and Mg-deficiencies reduced the seedling growth rate significantly. For future experiments, the authors suggest an experiment period longer than 102 d to achieve more conclusive results.

Keywords

Nutrient deficiency, Symptomatology, Malformations, Chlorosis, Necrosis, Chlorophyll

PDF

References

  1. Adams, D.O. and S.F. Yang. 1981. Ethylene the gaseous plant hormone: mechanism and regulation of biosynthesis. Trends Biochem. Sci. 6, 161-164. Doi: https://doi.org/10.1016/0968-0004(81)90059-1
  2. Agronet. 2023. Reporte: área, producción y rendimiento nacional por cultivo – feijoa. In: https://www.agronet.gov.co/estadistica/paginas/home.aspx?cod=1; consulted: March, 2023.
  3. Allnér, O., L. Nilsson, and A. Villa. 2012. Magnesium ion–water coordination and exchange in biomolecular simulations. J. Chem. Theory Comput. 8(4), 1493-1502. Doi: https://doi.org/10.1021/ct3000734
  4. Barnard, R., G. Cillié, and J. Kotzé. 1991. Deficiency symptoms in avocados. South Afr. Avocado Growers’ Ass. Yearb. 14, 67-71.
  5. Bautista-Montealegre, L.G., M.M. Bolaños-Benavides, J.H. Argüelles-Cárdenas, and G. Fischer. 2019. Fertilización con nitrógeno, fósforo, potasio y calcio en mora (Rubus glaucus Benth.): Efecto sobre Antracnosis bajo condiciones controladas. Acta Agron. 68(3), 228-236. Doi: https://doi.org/10.15446/acag.v68n3.68337
  6. Bautista-Montealegre, L.G., L.Y Deantonio-Florido, W.A. Cardona, M.M. Bolaños-Benavides, and G. Fischer. 2022. Mineral nutrition and tolerance to Colletotrichum spp. of Andean blackberry (Rubus glaucus Benth.) in nursery. Agron. Mesoam. 33(3), 48655. Doi: https://doi.org/10.15517/am.v33i3.48655
  7. Brett, C.T. and K.W. Waldron. 1996. Physiology and biochemistry of plant cell walls. Vol. 2. Springer Science & Business Media.
  8. Brown, P.H., N.A. Bellaloui, M.A. Wimmer, E.S. Bassil, J. Ruiz, H. Hu, H. Pfeffer, F. Dannel, and V. Römheld. 2002. Boron in plant biology. Plant Biol. 4(02), 205-223. Doi: https://doi.org/10.1055/s-2002-25740
  9. Buitrago, S., M. Leandro, and G. Fischer. 2021. Symptoms and growth components of feijoa (Acca sellowiana [O. Berg] Burret) plants in response to the missing elements N, P, and K. Rev. Colomb. Cienc. Hortic. 15(3), e13159. Doi: https://doi.org/10.17584/rcch.2021v15i3.13159
  10. Cakmak, I., P. Brown, J.M. Colmenero-Flores, S. Husted, B.Y. Kutman, M. Nikolic, Z. Rengel, S.B. Schmidt, and F.-J. Zhao. 2023. Micronutrients. In: Rengel, Z., I. Cakmak, and P. White (eds.). Marschner’s mineral nutrition of plants. 4th ed. Elsevier. Doi: https://doi.org/10.1016/B978-0-12-819773-8.00017-4
  11. Cakmak, I. and A.M. Yazici. 2010. Magnesium: A forgotten element in crop production. Better Crops 94(2), 23-25.
  12. Castaño, C.A., C.S. Morales, and F.H. Obando. 2008. Evaluación de las deficiencias nutricionales en el cultivo de la mora (Rubus glaucus) en condiciones controladas para bosque montano bajo. Agronomía 16(1), 75-88.
  13. Cockson, P., H. Landis, T. Smith, K. Hicks, and B. Whipker. 2019. Characterization of nutrient disorders of Cannabis sativa. Appl. Sci. 9(20). Doi: https://doi.org/10.3390/app9204432
  14. de Bang, T.C., S. Husted, K.H. Laursen, D.P. Persson, and J.K. Schjoerring. 2021. The molecular–physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol. 229(5), 2446-2469. Doi: https://doi.org/10.1111/nph.17074
  15. Donazzolo, J., E.L.C. Turra, L.C. Voss, M.A. Danner, I. Citadin, and R.O. Nodari. 2019. Reproductive biology and flowering of feijoa (Acca sellowiana (Berg) Burret) in areas of marginal occurrence. J. Agric. Sci. 11(8). Doi: https://doi.org/10.5539/jas.v11n8p156
  16. Dussán, S.L., D.A. Villegas, and D. Miranda. 2016. Efecto de la deficiencia de N, P, K, Mg, Ca y B sobre la acumulación y distribución de la masa seca en plantas de guayaba (Psidium guajava L.) var. ICA Palmira II en fase de vivero. Rev. Colomb. Cienc. Hortic. 10(1), 40-52. Doi: https://doi.org/10.17584/rcch.2016v10i1.4277
  17. Dwivedi, P. and R.S. Dwivedi. 2012. Physiology of abiotic stress in plants. Agrobios, Jodhpur, India.
  18. Eisa, M., D. Ragauskaitė, S. Adhikari, F. Bella, and J. Baltrusaitis. 2022. Role and responsibility of sustainable chemistry and engineering in providing safe and sufficient nitrogen fertilizer supply at turbulent times. ACS Sustain. Chem. Eng. 10(28), 8997-9001. Doi: https://doi.org/10.1021/acssuschemeng.2c03972
  19. Fischer, G. and L.M. Melgarejo. 2021. Ecophysiological aspects of guava (Psidium guajava L.). A review. Rev. Colomb. Cienc. Hortic. 15(2), e12355. Doi: https://doi.org/10.17584/rcch.2021v15i2.12355
  20. Fischer, G., L.M. Melgarejo, and H.E. Balaguera-López. 2022a. Review on the impact of elevated CO2 concentrations on fruit species in the face of climate change. Cienc. Tecnol. Agropecu. 23(2), e2475. Doi: https://doi.org/10.21930/rcta.vol23_num2_art:2475
  21. Fischer, G., D. Miranda, G. Cayón, and M. Mazorra (eds.). 2003. Cultivo, poscosecha y exportación de la feijoa (Acca sellowiana Berg). Produmedios, Bogota.
  22. Fischer, G., J.O. Orduz-Rodríguez, and C.V.T. do Amarante. 2022b. Sunburn disorder in tropical and subtropical fruits. A review. Rev. Colomb. Cienc. Hortíc. 16(3), e15703. Doi: https://doi.org/10.17584/rcch.2022v16i3.15703
  23. Fischer, G. and A. Parra-Coronado. 2020. Influence of some environmental factors on the feijoa (Acca sellowiana [Berg] Burret): A review. Agron. Colomb. 38(3), 388-397. Doi: https://doi.org/10.15446/agron.colomb.v38n3.88982
  24. Fischer, G., A. Parra-Coronado, and H.E. Balaguera-López. 2022c. Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agron. Colomb. 40(2), 212-227. Doi. https://doi.org/10.15446/agron.colomb.v40n2.101854
  25. Fischer, G., A. Parra-Coronado, and H.E. Balaguera-López. 2020. Aspectos del cultivo y la fisiología de la feijoa (Acca sellowiana [Berg] Burret). Una revisión. Cien. Agri. 17(3), 11-24. Doi: https://doi.org/10.19053/01228420.v17.n3.2020.11386
  26. Fromm, J. 2010. Wood formation of trees in relation to potassium and calcium nutrition. Tree Physiol. 30(9), 1140-1147. Doi: https://doi.org/10.1093/treephys/tpq024
  27. Geiger, D., S. Scherzer, P. Mumm, and R. Hedrich. 2010. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc. Nat. Acad. Sci. 107(17), 8023-8028. Doi: https://doi.org/10.1073/pnas.0912030107
  28. Gil, G.F. 2006. La producción de fruta. 2nd ed. Ediciones Universidad Católica de Chile, Santiago.
  29. Gómez, M.I. 2012. Fertilización de frutales. pp. 141-168. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  30. Han, S., L.-S. Chen, H.-X. Jiangb, B.R. Smith, L.-T. Yang, and C.-Y. Xie. 2008. Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus cuttings. J. Plant Physiol. 165, 1331-1341. Doi: https://doi.org/10.1016/j.jplph.2007.11.002
  31. Hänsch, R. and R.R. Mendel. 2009. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 12, 259-266. Doi: https://doi.org/10.1016/j.pbi.2009.05.006
  32. Hirschi, K.D. 2004. The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol. 136(1), 2438-2442. Doi: https://doi.org/10.1104/pp.104.046490
  33. Hunt, R. 1990. Basic growth analysis: Plant growth analysis for beginners. Springer, Dordrecht, The Netherlands. Doi: https://doi.org/10.1007/978-94-010-9117-6
  34. Hurtado, S., H.N. Díaz, G. Fischer, D. Miranda, and L.M. Melgarejo. 2019. Sintomatología de deficiencias de algunos nutrientes minerales en plantas de aguacate (Persea americana Mill. cv. Hass) en estado vegetativo. pp. 119-132. In: Melgarejo, L.M. (ed.). Gulupa (Passiflora edulis), curuba (Passiflora tripartita), aguacate (Persea americana) y tomate de árbol (Solanum betaceum) innovaciones. Universidad Nacional de Colombia, Bogota. Doi: https://doi.org/10.36385/FCBOG-1-07
  35. Knight, H. 2000. Calcium signaling during abiotic stress in plants. Int. Rev. Cytol. 195, 269-324. Doi: https://doi.org/10.1016/s0074-7696(08)62707-2
  36. Kochhar, S.L. and S.K. Gujral. 2020. Plant physiology - Theory and applications. 2nd ed. Cambridge University Press, Cambridge, UK. Doi: https://doi.org/10.1017/9781108486392
  37. Kumari, B., S. Prakash, and U.S. Jaiswal. 2018. Production potential of guava as influenced by nitrogen and boron levels as well as macro and micro nutrient content in leaf. Int. J. Curr. Microbiol. Appl. Sci. 7(4), 1780-1789. Doi: https://doi.org/10.20546/ijcmas.2018.704.202
  38. La Verde, V., P. Dominici, and A. Astegno. 2018. Towards understanding plant calcium signaling through calmodulin-like proteins: A biochemical and structural perspective. Int. J. Mol. Sci. 19(5), 1331. Doi: https://doi.org/10.3390/ijms19051331
  39. Lambers, H. and R. Oliveira. 2019. Plant physiological ecology. 3rd ed. Springer, Cham, Switzerland. Doi: https://doi.org/10.1007/978-3-030-29639-1
  40. Liu, M., X. Liu, X.L. He, L.J. Liu, H. Wu, C.X. Tang, Y.S. Zhang, and C.W. Jin. 2017. Ethylene and nitric oxide interact to regulate the magnesium deficiency‐induced root hair development in Arabidopsis. New Phytol. 213(3), 1242-1256. Doi: https://doi.org/10.1111/nph.14259
  41. Maathuis, F.J.M. 2009. Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 12, 250-258. Doi: https://doi.org/10.1016/j.pbi.2009.04.003
  42. Marry, M., K. Roberts, S.J. Jopson, I.M. Huxham, M.C. Jarvis, J. Corsar, E. Robertson, and M.C. McCann. 2006. Cell–cell adhesion in fresh sugar-beet root parenchyma requires both pectin esters and calcium cross-links. Physiol. Plant. 126, 243-256. Doi: https://doi.org/10.1111/j.1399-3054.2006.00591.x
  43. Marschner, P. (ed.). 2012. Marschner’s mineral nutrition of higher plants. 3rd ed. Academic Press, London.
  44. Martínez, F.E., J. Sarmiento, G. Fischer, and F. Jiménez. 2009. Síntomas de deficiencia de macronutrientes y boro en plantas de uchuva (Physalis peruviana L.). Agron. Colomb. 27(2), 169-178.
  45. Moreno-Echeverry, D.L., I.A. Quiroga, H.E. Balaguera-López, and S. Magnitskiy. 2016. El estrés por boro afecta la fotosíntesis y la síntesis de compuestos antioxidantes en plantas. Una revisión. Rev. Colomb. Cienc. Hortic. 10(1), 137-148. Doi: https://doi.org/10.17584/rcch.2016v10i1.4189
  46. Natale, W., R. Mello-Prado, J.A. Quaggio, and D. Mattos-Junior. 2009. Guava. In: Araujo, L. and A. Naumov (eds.). Fruteiras tropicais do Brasil. International Potash Institute, Bern, Switzerland
  47. Pallardy, S.G. 2010. Physiology of woody plants. 3rd ed. Academic Press, San Diego, CA.
  48. Parra-Coronado, A. and G. Fischer. 2013. Maduración y comportamiento poscosecha de la feijoa (Acca sellowiana (O. Berg) Burret). Una revisión. Rev. Colomb. Cienc. Hortic. 7(1), 98-110. Doi: https://doi.org/10.17584/rcch.2013v7i1.2039
  49. Parra-Coronado, A., G. Fischer, H.E. Balaguera-López, and L.M. Melgarejo. 2022. Sugar and organic acids content during fruit development in feijoa (Acca sellowiana [O. Berg] Burret) grown in two altitudinal zones. Rev. Cienc. Agric. 39(1), 55-69. Doi: https://doi.org/10.22267/rcia.223901.173
  50. Prabhakar, N., P.R. Suresh, N. Sainath, and P.R. Nithya. 2016. Relevance of calcium nutrition in present day agriculture. Adv. Life Sci. 5(7), 2526-2530.
  51. Prado, R.M., G. Caione, and D.J. Silva. 2012. Macronutrients and micronutrients deficiency symptoms in mango. pp. 470-478. In: Valavi, S.G. (ed.). Mango cultivation in different countries. Studium Press LLC, Jodhpur, India.
  52. Rajendran, C., K. Ramamoorthy, and S.J. Hepziba. 2009. Nutritional and physiological disorders in crop plants. Scientific Publ. Jodhpur, India.
  53. Robertson, G. and B. Loughman. 1973. Rubidium uptake and boron deficiency in Vicia faba L. J. Exp. Bot. 24(6), 1046-1052. Doi: https://doi.org/10.1093/jxb/24.6.1046
  54. Roveda-Hoyos, G., J.F. Venegas-Gómez, L.P. Moreno-Fonseca, S. Magnitskiy, and M. Ramírez-Gómez. 2022. Effect of inoculation with Acaulospora and Glomus on the growth and nutrition of blueberries (Vaccinium corymbosum) with different fertilization levels. Rev. Colomb. Cienc. Hortic. 16(2), e13561. Doi: https://doi.org/10.17584/rcch.2022v16i2.13561
  55. Sachet, M.R., I. Citadin, M.T. Guerrezi, R.H. Pertille. J. Donazzolo, and R.O. Nodari. 2019. Non-destructive measurement of leaf area and leaf pigments in feijoa trees. Rev. Bras. Eng. Agric. Amb. 23(1), 16-20. Doi: https://doi.org/10.1590/1807-1929/agriambi.v23n1p16-20
  56. Schmidt, S.B. and S. Husted. 2019. The biochemical properties of manganese in plants. Plants 8(10), 381. Doi: https://doi.org/10.3390/plants8100381
  57. Shireen, F., M.A. Nawaz, C. Chen, Q. Zhang, Z. Zheng, H. Sohail, J. Sun, H. Cao, Y. Huang, and Z. Bie. 2018. Boron: Functions and approaches to enhance its availability in plants for sustainable agriculture. Int. J. Mol. Sci. 19(7), 1856. Doi: https://doi.org/10.3390/ijms19071856
  58. Silva, E.B., A.A. Santos, A.M. Mattos, A.M.B. Neto, M.C.M. Cruz, R.A. Moreira, V.C. Andrade Junior, E.D. Gonçalves, and L.F. Oliveira. 2017. Visual symptoms of nutrient deficiencies in Physalis peruviana L. Biosci. J. 33(1), 105-112. Doi: https://doi.org/10.14393/BJ-v33n1a2017-32746
  59. Silva-Cardoso, I.M.A., M.W.R. Souza, K. Almeida, J.F. Gonçalves, R. Veloso, A. Marques, and M. Laia. 2014. Nutritional deficiency symptoms in hybrid clones of Eucalyptus under omission of macronutrients, B and Zn. Aust. J. Basic Appl. Sci. 8(15), 85-89.
  60. Taiz, L., E. Zeiger, I.M. Møller, and A. Murphy. 2017. Fisiologia e desenvolvimento vegetal. 6th ed. Artmed, Porto Alegre, Brazil.
  61. Tanoi, K. and N.I. Kobayashi. 2015. Leaf senescence by magnesium deficiency. Plants 4(4), 756-772. Doi: https://doi.org/10.3390/plants4040756
  62. Tortora, F., R. Notariale, V. Maresca, K.V. Good, S., Sorbo A. Basile, M. Piscopo, and C. Manna. 2019. Phenol-rich Feijoa sellowiana (Pineapple guava) extracts protect human red blood cells from mercury-induced cellular toxicity. Antioxidants 8(7), 220. Doi: https://doi.org/10.3390/antiox8070220
  63. Tränkner, M., E. Tavakol, and B. Jákli. 2018. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant. 163(3), 414-431. Doi: https://doi.org/10.1111/ppl.12747
  64. Van Maarschalkerweerd, M. and S. Husted. 2015. Recent developments in fast spectroscopy for plant mineral analysis. Front. Plant Sci. 6(35), 169. Doi: https://doi.org/10.3389/fpls.2015.00169
  65. White, P.J., M.R. Broadley, H.A. El-Serehy, T.S. George, and K. Neugebauer. 2018. Linear relationships between shoot magnesium and calcium concentrations among angiosperm species are associated with cell wall chemistry. Ann. Bot. 122(2), 221-226. Doi: https://doi.org/10.1093/aob/mcy062
  66. Wimmer, M.A., I. Abreu, R.W. Bell, M.D. Bienert, P.H. Brown, B. Dell, T. Fujiwara, H.E. Goldbach, T. Lehto, and H.P. Mock. 2019. Boron: an essential element for vascular plants. New Phytol. 226(5), 1232-1237. Doi: https://doi.org/10.1111/nph.16127
  67. Zekri, M. and T. Obreza. 2013. Potassium (K) for citrus trees. Document SL381. UF/IFAS Extension, Gainesville, FL. Doi: https://doi.org/10.32473/edis-ss583-2013
  68. Zhu, F. 2018. Chemical and biological properties of feijoa (Acca sellowiana). Trends Food Sci. Technol. 81, 121-131. Doi: https://doi.org/10.1016/j.tifs.2018.09.008

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 4 5 6 > >> 

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.