Skip to main navigation menu Skip to main content Skip to site footer

Heavy metal contamination of vegetables in urban and peri-urban areas. An overview

Some effects of excessive accumulation of heavy metals (HM) in vegetable plants. Source: The authors

Abstract

The growth in urbanization and industrialization is causing an increase in environmental pollution in cities and their surrounding areas. Additionally, the growing urban population requires a greater volume of fresh vegetables. In nature, heavy metals (HM) are widely distributed; when they gradually enter the soil-plant-consumer continuum, they are difficult to remove from the system and accumulate at toxic levels. To gain an overview of this situation, the information in the ScienceDirect database was used in accordance with the PRISMA guide. For this, the keywords “vegetable”, “contamination” and “urban” were used in a first step and, in a second step, the keywords “vegetable” and “heavy metal” were used. The most toxic HM for consumers are Cd, Pb, Hg, Cr and As, as well as essential MP for the plant (Zn, Cu, Ni, Fe, Mo). At excessive concentrations these cause neurological and kidney damage, cancer and other forms of damage to health. Crop contamination can come from the atmosphere, irrigation water, and/or the soil itself, proximity to busy roads, industry, polluted rivers, and excessive use of pesticides and fertilizers that contain HM. Plant poisoning by HM causes a decrease in root growth and biomass of the plant, foliar chlorosis, and other physiological alterations. Leafy vegetables (including aromatic herbs) and solanaceous vegetables accumulate the most HM, while cucurbits and legumes are the least affected. Plants that develop for a longer time accumulate a greater amount of HM. In general, to increase the food safety of urban horticulture, more studies are needed on HM contamination, soil aptitude, risk assessment for ingesting intoxicated vegetables, as well as appropriate instructions for the clean handling of these crops in cities and surrounding areas.

Keywords

Cadmium, Lead, Wastewater, Toxicity, Urban horticulture, Food safety

PDF

References

  • Aftab, K., S. Iqbal, M.R. Khan, R. Busquets, R. Noreen, N. Ahmad, S.G. T. Kazimi, A.M. Karami, N.M.S. Al Suliman, and M. Ouladsmane. 2023. Wastewater-irrigated vegetables are a significant source of heavy metal contaminants: toxicity and health risks. Molecules 28(3), 1371. Doi: https://doi.org/10.3390/molecules28031371
  • Aguirre, W., G. Fischer, and D. Miranda. 2011. Tolerancia a metales pesados a través del uso de micorrizas arbusculares en plantas cultivadas. Rev. Colomb. Cienc. Hortíc. 5(1), 141-153. Doi: https://doi.org/10.17584/rcch.2011v5i1.1260
  • Alloway, B.J. 2013. Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. 3rd ed. Springer, Reading, UK. Doi: https://doi.org/10.1007/978-94-007-4470-7
  • Antisari, L.V., F. Orsini, L. Marchetti, G. Vianello, and G. Gianquinto. 2015. Heavy metal accumulation in vegetables grown in urban gardens. Agron. Sustain. Dev. 35, 1139-1147. Doi: https://doi.org/10.1007/s13593-015-0308-z
  • Asrade, B. and G. Ketema. 2023. Determination of the selected heavy metal content and its associated health risks in selected vegetables marketed in Bahir Dar Town, Northwest Ethiopia. J. Food Qual. 2023, 7370171. Doi: https://doi.org/10.1155/2023/7370171
  • Aubry, C. and N. Manouchehri. 2019. Urban agriculture and health: assessing risks and overseeing practices. Field Actions Sci. Rep. (Special Issue 20), 108-111.
  • Augustsson, A., M. Lundgren, A. Qvarforth, R. Hough, E. Engström, C. Paulukat, and I. Rodushkin. E. Moreno-Jiménez, L. Beesley, L. Trakal, and R.L. Hough. 2023a. Urban vegetable contamination - The role of adhering particles and their significance for human exposure. Sci. Total Environ. 900, 165633. Doi: https://doi.org/10.1016/j.scitotenv.2023.165633
  • Augustsson, A., M. Lundgren, A. Qvarforth, R. Hough, E. Engström, C. Paulukat, and I. Rodushkin. 2023b. Managing health risks in urban agriculture: The effect of vegetable washing for reducing exposure to metal contaminants. Sci. Total Environ. 863, 160996. Doi: https://doi.org/10.1016/j.scitotenv.2022.160996
  • Bautista, O.V., G. Fischer, and J.F. Cárdenas. 2013. Cadmium and chromium effects on seed germination and root elongation of lettuce, spinach and Swiss chard. Agron. Colomb. 31(1), 48-57.
  • Bhat, S.A., O. Bashir, S.A. Ul Haq, T. Amin, A. Rafiq, M. Ali, J.H.P. Américo-Pinheiro, and F. Sher. 2022. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere 303(Part 1), 134788. Doi: https://doi.org/10.1016/j.chemosphere.2022.134788
  • Begum, M.L., U.H.B. Naher, M.R. Hosen, and A. Rahaman. 2019. Levels of heavy metals in soil and vegetables and health risk assessment. Int. J. Sci. Technol. Res. 8(7), 770-775.
  • Bello, P. and L. Lesmes. 2011. Determinación de metales pesados en apio (Apium graveolens L.), lechuga (Lactuca sativa L. var. Batavia) y acelga (Beta vulgaris L.) mediante ICP-AES en dos zonas de producción de hortalizas de la Sabana de Bogotá. Undergraduate thesis. Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogota.
  • Buscaroli, E., I. Braschi, C. Cirillo, A. Fargue-Lelièvre, G.C. Modarelli, G. Pennisi, I. Righini, K. Specht, and F. Orsini. 2021. Reviewing chemical and biological risks in urban agriculture: a comprehensive framework for a food safety assessment of city region food systems. Food Contr. 126, 108085. Doi: https://doi.org/10.1016/j.foodcont.2021.108085
  • Buta, M., J. Hubeny, W. Zieliński, M. Harnisz, and E. Korzeniewska. 2021. Sewage sludge in agriculture – the effects of selected chemical pollutants and emerging genetic resistance determinants on the quality of soil and crops – a review. Ecotoxicol. Environ. Saf. 214, 112070. Doi: https://doi.org/10.1016/j.ecoenv.2021.112070
  • Casierra-Posada, F. and O.E. Aguilar-Avendaño. 2007. Estrés por aluminio en plantas: reacciones en el suelo, síntomas en vegetales y posibilidades de corrección. Una revisión. Rev. Colomb. Cienc. Hortic. 1(2), 246-257. Doi: https://doi.org/10.17584/rcch.2007v1i2.8701
  • Chaves-Barrantes, N.F. and M.V. Gutiérrez-Soto. 2017. Respuestas al estrés por calor en los cultivos. I. Aspectos moleculares, bioquímicos y fisiológicos. Agron. Mesoamer. 28(1), 237-253. Doi: https://doi.org/10.15517/am.v28i1.21903
  • Clemens, S. 2001. Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212, 475-486. Doi: https://doi.org/10.1007/s004250000458
  • Cohen, N. and K. Wijsman. 2014. Urban agriculture as green infrastructure: the case of New York city. Urban Agric. Magaz. (27), 16-19.
  • Corrales, L.C., L.C. Sánchez, and M.E. Quimbayo. 2018. Microorganismos potencialmente fitopatógenos en aguas de riego proveniente de la cuenca media del rio Bogotá. NOVA 16(29), 71-89. Doi: https://doi.org/10.22490/24629448.2691
  • Covarrubias, S.A. and J.J. Peña. 2017. Contaminación ambiental por metales pesados en México: Problemática y estrategias de fitorremediación. Rev. Int. Contam. Ambie. 33, 7-21. Doi: https://doi.org/10.20937/RICA.2017.33.esp01.01
  • Crispo, M., M.C. Dobson, R.S. Blevins, W. Meredith, J.A. Lake, and J.L. Edmondson. 2021. Heavy metals and metalloids concentrations across UK urban horticultural soils and the factors influencing their bioavailability to food crops. Environ. Pollut. 288, 117960. Doi: https://doi.org/10.1016/j.envpol.2021.117960
  • DalCorso, G., A. Manara, S. Piasentin, and A. Furini. 2014. Nutrient metal elements in plants. Metallomics 6(10), 1770-1788. Doi: https://doi.org/10.1039/C4MT00173G
  • Díaz-Martínez, J.A. and C.A. Granada-Torres. 2018. Efecto de las actividades antrópicas sobre las características fisicoquímicas y microbiológicas del río Bogotá a lo largo del municipio de Villapinzón, Colombia. Rev. Fac. Med. 66(1), 45-52. Doi: http://doi.org/10.15446/revfacmed.v66n1.59728
  • Dobson, M.C., M. Crispo, R.S. Blevins, P.H. Warren, and J.L. Edmondson. 2021. An assessment of urban horticultural soil quality in the United Kingdom and its contribution to carbon storage. Sci. Total Environ. 777, 146199. Doi: https://doi.org/10.1016/j.scitotenv.2021.146199
  • Eijsackers, H. and M. Maboeta. 2023. Pesticide impacts on soil life in southern Africa: Consequences for soil quality and food security. Environ. Adv. 13, 100397. Doi: https://doi.org/10.1016/j.envadv.2023.100397
  • Elango, D., K.D. Devi, H.K. Jeyabalakrishnan, K. Rajendran, V.K.T. Haridass, D. Dharmaraj, C.V. Charuchandran, W. Wang, M. Fakude, R. Mishra, K. Vembu, and X. Wang. 2022. Agronomic, breeding, and biotechnological interventions to mitigate heavy metal toxicity problems in agriculture. J. Agric. Food Res. 10, 100374. Doi: https://doi.org/10.1016/j.jafr.2022.100374
  • Emekwuru, N. and O. Ejohwomu. 2023. Temperature, humidity and air pollution relationships during a period of rainy and dry seasons in Lagos, West Africa. Climate 11(5), 113. Doi: https://doi.org/10.3390/cli11050113
  • Epstein, E. and A.J. Bloom. 2004. Mineral nutrition of plants: principles and perspectives. 2nd ed. Sinauer Associates, Sunderland, MA.
  • Ercilla-Montserrat, M., P. Muñoz, J.I. Montero, X. Gabarrell, and J. Rieradevall. 2018. A study on air quality and heavy metals content of urban food produced in a Mediterranean city (Barcelona). J. Cleaner Prod. 195, 385-395. Doi: https://doi.org/10.1016/j.jclepro.2018.05.183
  • Ernst, W.H.O. 2003. Evolution of adaptation mechanism of plants on metal-enriched soils. pp. 433-436. In: Larcher, W. (ed.). Physiological plant ecology. 4th ed. Springer, Berlin.
  • FAO-OMS. 2009. Codex alimentarius. Norma general para los contaminantes y las toxinas presentes en los alimentos y piensos. CXS 193-1995. Ginebra.
  • Ferreira, A.J.D., R.I.M.M. Guilherme, C.S.S. Ferreira, and M.F.M.L. Oliveira. 2018a. Urban agriculture, a tool towards more resilient urban communities? Curr. Opin. Environ. Sci. Health 5, 93-97. Doi: https://doi.org/10.1016/j.coesh.2018.06.004
  • Ferreira, C.S.S., R.P.D Walsh, and A.J.D. Ferreira. 2018b. Degradation in urban areas. Curr. Opin. Environ. Sci. Health 5, 19-25. Doi: https://doi.org/10.1016/j.coesh.2018.04.001
  • Filipiak-Szok, A., M. Kurzawa, and E. Szłyk. 2015. Determination of toxic metals by ICP-MS in Asiatic and European medicinal plants and dietary supplements. J. Trace Elem. Med. Biol. 30, 54-58. Doi: https://doi.org/10.1016/j.jtemb.2014.10.008
  • Fischer, F.L. and D.F. Beltrán. 2021. Análisis del material particulado en relación con la percepción de la calidad de vida en tres localidades de Bogotá - Colombia. Gestión Ambiente 24(2), 98601. Doi: https://doi.org/10.15446/ga.v24n2.98601
  • Fischer, G., F. Casierra-Posada, and M. Blanke. 2023. Impact of waterlogging on fruit crops in the era of climate change, with emphasis in tropical and subtropical species. Agron. Colomb. 41(2).
  • Folberth, G.A., T.M Butler, W.J. Collins, and S.T. Rumbold. 2015. Megacities and climate change - A brief overview. Environ. Pollut. 203, 235-242. Doi: https://doi.org/10.1016/j.envpol.2014.09.004
  • Galán, E. and A. Romero. 2008. Contaminación de suelos por metales pesados. Macla: Rev. Soc. Esp. Mineral. (10), 48-59.
  • García, D. 2006. Efectos fisiológicos y compartimentación radicular en plantas de Zea mays L. expuestas a la toxicidad por plomo. PhD thesis. Facultad de Ciencias, Universidad Autónoma de Barcelona, Barcelona, Spain.
  • Gatta, G., A. Libutti, A. Gagliardi, L. Beneduce, L. Brusetti, L. Borruso, G. Disciglio, and E. Tarantino. 2015. Treated agro-industrial wastewater irrigation of tomato crop: effects on qualitative/quantitative characteristics of production and microbiological properties of the soil. Agric. Water Manage. 149, 33-43. Doi: https://doi.org/10.1016/j.agwat.2014.10.016
  • Gil, C., R. Boluda, and J. Ramos. 2004. Determination and evaluation of cadmium, lead and nickel in greenhouse soils of Almería (Spain). Chemosphere 55(7), 1027-1034. Doi: https://doi.org/10.1016/j.chemosphere.2004.01.013
  • González, J.E., P. Ramamurthy, R.D. Bornstein, F. Chen, E.R. Bou-Zeid, M. Ghandehari, J. Luvall, C. Mitra, and D. Niyogi. 2021. Urban climate and resiliency: a synthesis report of state of the art and future research directions. Urban Clim. 38, 100858. Doi: https://doi.org/10.1016/j.uclim.2021.100858
  • Guo, H., H. Yang, W. Guo, X. Li, and B. Chen. 2023. Defense response of pumpkin rootstock to cadmium. Sci. Hortic. 308, 111548. Doi: https://doi.org/10.1016/j.scienta.2022.111548
  • Habibi, F., T. Liu, M.A. Shahid, B. Schaffer, and A. Sarkhosh. 2023. Physiological, biochemical, and molecular responses of fruit trees to root zone hypoxia. Environ. Exp. Bot. 206, 105179. Doi: https://doi.org/10.1016/j.envexpbot.2022.105179
  • Haider, F.U., C. Liqun, J.A. Coulter, S.A. Cheema, J. Wu, R. Zhang, M. Wenjun, and M. Farooq. 2021. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 211, 111887. Doi: https://doi.org/10.1016/j.ecoenv.2020.111887
  • Haitsma, M.C.G., F.H.M. van de Ven, and P. Kirshen. 2022. Circularity in the urban water-energy-nutrients-food nexus. Energy Nexus 7, 100081. Doi: https://doi.org/10.1016/j.nexus.2022.100081
  • Hamad, A.A., K.H. Alamer, and H.S. Alrabie. 2021. The accumulation risk of heavy metals in vegetables which grown in contaminated soil. Baghdad Sci. J. 18(3), 471-479. Doi: http://doi.org/10.21123/bsj.2021.18.3.0471
  • Herrera, C.D. and M.F. Lizarazo. 2018. Cuantificación de metales pesados en hortalizas producidas en la cuenca media del río Bogotá, Sibaté. Undergraduate thesis. Facultad de Ingeniería, Universidad El Bosque, Bogota. https://repositorio.unbosque.edu.co/handle/20.500.12495/3310
  • Hu, N.-W., H.-W. Yu, B.-L. Deng, B. Hu, G.-P. Zhu, X.-T. Yang, T.-Y. Wang, Y. Zeng, and Q.-Y. Wang. 2023. Levels of heavy metal in soil and vegetable and associated health risk in peri-urban areas across China. Ecotoxicol. Environ. Saf. 259, 115037. Doi: https://doi.org/10.1016/j.ecoenv.2023.115037
  • Hume, I.V., D.M. Summers, and T.R Cavagnaro. 2021. Self-sufficiency through urban agriculture: nice idea or plausible reality? Sustain. Cities Soc. 68, 102770. Doi: https://doi.org/10.1016/j.scs.2021.102770
  • Imperato, M., P. Adamo, D. Naimo, M. Arienzo, D. Stanzione, and P. Violante. 2003. Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ. Pollut. 124(2), 247-256. Doi: https://doi.org/10.1016/S0269-7491(02)00478-5
  • Izquierdo-Díaz, M., V. Hansen, F. Barrio-Parra, E. De Miguel, Y. You, and J. Magid. 2023. Assessment of lettuces grown in urban areas for human consumption and as bioindicators of atmospheric pollution. Ecotoxicol. Environ. Saf. 256, 114883. Doi: https://doi.org/10.1016/j.ecoenv.2023.114883
  • Jalali, M. and S. Moharami. 2010. Effects of the addition of phosphorus on the redistribution of cadmium, copper, lead, nickel, and zinc among soil fractions in contaminated calcareous soil. Soil Sediment Contam.: Int. J. 19(1), 88-102. Doi: https://doi.org/10.1080/15320380903390521
  • Jansma, J.E. and S.C.O. Wertheim-Heck. 2022. Feeding the city: a social practice perspective on planning for agriculture in peri-urban Oosterwold, Almere, the Netherlands. Land Use Policy 117, 106104. Doi: https://doi.org/10.1016/j.landusepol.2022.106104
  • Kabata-Pendias, A. 2000. Trace elements in soils and plants. 3rd ed. CRC Press, Boca Raton, FL. Doi: https://doi.org/10.1201/9781420039900
  • Kabata-Pendias, A. 2004. Soil-plant transfer of trace elements - an environmental issue. Geoderma 122(2-4), 143-149. Doi: https://doi.org/10.1016/j.geoderma.2004.01.004
  • Kathpalia, R. and S.C. Bhatla. 2018. Plant mineral nutrition. pp. 37-82. In: Bhatla, S.C. and M.A. Lal (eds.). Plant physiology, development and metabolism. Springer Nature Singapore. Doi: https://doi.org/10.1007/978-981-13-2023-1_2
  • Kaiser, M.L., M.L. Williams, N. Basta, M. Hand, and S. Huber. 2015. When vacant lots become urban gardens: characterizing the perceived and actual food safety concerns of urban agriculture in Ohio. J. Food Prot. 78(11), 2070-2080. Doi: https://doi.org/10.4315/0362-028X.JFP-15-181
  • Kulak, M., A. Graves, and J. Chatterton. 2013. Reducing greenhouse gas emissions with urban agriculture: a life cycle assessment perspective. Landsc. Urban Plann. 111, 68-78. Doi: https://doi.org/10.1016/j.landurbplan.2012.11.007
  • Kumar, N., S. Kumar, K. Bauddh, N. Dwivedi, P. Shukla, D.P., Singh, and S.C Barman. 2015. Toxicity assessment and accumulation of metals in radish irrigated with battery manufacturing industry effluent. Int. J. Veg. Sci. 21(4), 373-385. Doi: https://doi.org/10.1080/19315260.2014.880771
  • Kumar, P., A. Druckman, J. Gallagher, B. Gatersleben, S. Allison, T.S. Eisenman, U. Hoang, S. Hama, A. Tiwari, S. Sharma, K.V. Abhijith, D. Adlakha, A. McNabola, T. Astell-Burt, X. Feng, A.C. Skeldon, S. de Lusignan, and L. Morawska. 2019. The nexus between air pollution, green infrastructure and human health. Environ. Int. 133(Part A), 105181. Doi: https://doi.org/10.1016/j.envint.2019.105181
  • Kumar, S., S. Prasad, M. Shrivastava, A. Bhatia, S. Islam, K.K. Yadav, S.K. Kharia, A. Dass, N. Gupta, S. Yadav, and M.M.S. Cabral-Pinto. 2022. Appraisal of probabilistic levels of toxic metals and health risk in cultivated and marketed vegetables in urban and peri-urban areas of Delhi, India. Environ. Toxicol. Pharm. 92, 103863. Doi: https://doi.org/10.1016/j.etap.2022.103863
  • Lambers, H. and R.S. Oliveira. 2019. Plant physiological ecology. 3rd ed. Springer Nature Switzerland, Cham, Switzerland. Doi: https://doi.org/10.1007/978-3-030-29639-1
  • Larcher, W. 2003. Physiological plant ecology. 4th ed. Springer, Berlin. Doi: https://doi.org/10.1007/978-3-662-05214-3
  • Li, G., G.X. Sun, Y. Ren, X.-S. Luo, and Y.-G. Zhu. 2018. Urban soil and human health: a review. Eur. J. Soil Sci. 69(1), 196-215. Doi: https://doi.org/10.1111/ejss.12518
  • Li, S., L. Yang, L. Chen, F. Zhao, and L. Sun. 2019. Spatial distribution of heavy metal concentrations in peri-urban soils in eastern China. Environ. Sci. Pollut. Res. 26, 1615-1627. Doi: https://doi.org/10.1007/s11356-018-3691-6
  • Li, X., Z. Zhou, T. Li, J. An, S. Zhang, X. Xu, Y. Pu, G. Wang, Y. Jia, X. Liu, and Y. Li. 2023. Soil potentially toxic element pollution at different urbanization intensities: quantitative source apportionment and source-oriented health risk assessment. Ecotoxicol. Environ. Saf. 251, 114550. Doi: https://doi.org/10.1016/j.ecoenv.2023.114550
  • Liang, H., W.-L. Wu, Y.-H. Zhang, S.-J. Zhou, C.-Y. Long, J. Wen, B.-Y. Wang, Z.-T. Liu, C.-Z. Zhang, P.-P. Huang, N. Liu, X.-L. Deng, and F. Zou. 2018. Levels, temporal trend and health risk assessment of five heavy metals in fresh vegetables marketed in Guangdong Province of China during 2014-2017. Food Contr. 92, 107-120. Doi: https://doi.org/10.1016/j.foodcont.2018.04.051
  • Liu, Y.-R., M.G.A. van der Heijden, J. Riedo, C. Sanz-Lazaro, D.J. Eldridge, F. Bastida, E. Moreno-Jiménez, X.-Q. Zhou, H.-W. Hu, J.-Z. He, J.L. Moreno, S. Abades, F. Alfaro, A.R. Bamigboye, M. Berdugo, J.L. Blanco-Pastor, A. de los Ríos, J. Duran, T. Grebenc, J.G. Illán, T.P. Makhalanyane, M.A. Molina-Montenegro, T.U. Nahberger, G.F. Peñaloza-Bojacá, C. Plaza, A. Rey, A. Rodríguez, C. Siebe, A.L. Teixido, N. Casado-Coy, P. Trivedi, C. Torres-Díaz, J.P. Verma, A. Mukherjee, X.-M. Zeng, L. Wang, J. Wang, E. Zaady, X. Zhou, Q. Huang, W. Tan, Y.-G. Zhu, M.C. Rillig, and M. Delgado-Baquerizo. 2023. Soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide. Nature Comm. 14, 1706. Doi: https://doi.org/10.1038/s41467-023-37428-6
  • Lobell, D.B. and J.A. Burney. 2021. Cleaner air has contributed one-fifth of US maize and soybean yield gains since 1999. Environ. Res. Lett. 16, 074049. Doi: https://doi.org/10.1088/1748-9326/ac0fa4
  • Londoño-Franco, L.F., P.T. Londoño-Muñoz, and F.G. Muñoz-García. 2016. Los riesgos de los metales pesados en la salud humana y animal. Rev. Bio Agro 14(2), 145-153. Doi: https://doi.org/10.18684/BSAA(14)145-153
  • Lora, R. and H. Bonilla. 2010. Remediación de un suelo de la cuenca alta del río Bogotá contaminado con los metales pesados cadmio y cromo. Rev. UDCA Act. Div. Cient. 13(2), 61-70. Doi: https://doi.org/10.31910/rudca.v13.n2.2010.730
  • Lundgren, M., M. Troldborg, J. Stubberfield, A. Augustsson, and R.L. Hough. 2023. Predictive modeling of plant uptake of Pb and Cd: implications of aerial deposition and the origin of parameterisation data. Environ. Challenges 12, 100734. Doi: https://doi.org/10.1016/j.envc.2023.100734
  • Ma, J., M.H. Saleem, M. Alsafran, H.A. Jabri, Mehwish, M. Rizwan, M. Nawaz, S. Ali, and K. Usman. 2022. Response of cauliflower (Brassica oleracea L.) to nitric oxide application under cadmium stress. Ecotoxicol. Environ. Saf. 243, 113969. Doi: https://doi.org/10.1016/j.ecoenv.2022.113969
  • Machado, A., N. García, C. García, L. Acosta, A. Córdova, M. Linares, D. Giraldoth, and H. Velásquez. 2008. Contaminación por metales (Pb, Zn, Ni y Cr) en aire, sedimentos viales y suelo en una zona de alto tráfico vehicular. Rev. Int. Contam. Ambient. 24(4), 171-182.
  • Margenat, A., V. Matamoros, S. Díez, N. Cañameras, J. Comas, and J.M. Bayona. 2019. Occurrence and human health implications of chemical contaminants in vegetables grown in peri-urban agriculture. Environ. Int. 124, 49-57. Doi: https://doi.org/10.1016/j.envint.2018.12.013
  • Marschner, P. (ed.). 2012. Marschner’s mineral nutrition of higher plants. 3th ed. Elsevier, Amsterdam.
  • McLaughlin, M.J. 2002. Bioavailability of metals to terrestrial plants. pp. 39-68. In: Allen, H.E. (ed.). Bioavailability of metals in terrestrial ecosystems. Importance of partitioning for bioavailability to invertebrates, microbes and plants. SETAC Press, Pensacola, FL.
  • Meftaul, I.M., K. Venkateswarlu, R. Dharmarajan, P. Annamalai, and M. Megharaj. 2020. Pesticides in the urban environment: a potential threat that knocks at the door. Sci. Total Environ. 711, 134612. Doi: https://doi.org/10.1016/j.scitotenv.2019.134612
  • Miranda, A.I., N.P. Brito-Manzano, P.M. Vargas-Falcón, and J. Bernat-Rodríguez. 2022. Evaluación de la contaminación por metales pesados en la laguna Machona, Tabasco, México. Braz. J. Animal Environ. Res. 5(1), 1062-1078. Doi: https://doi.org/10.34188/bjaerv5n1-080
  • Miranda, D., C. Carranza, and G. Fischer. 2008b. Calidad de agua de riego en la Sabana de Bogotá. Facultad de Agronomía, Universidad Nacional de Colombia, Bogota.
  • Miranda, D., C. Carranza, C.A. Rojas, C.M. Jerez, G. Fischer, and J. Zurita. 2008a. Acumulación de metales pesados en suelo y planta de cuatro cultivos hortícolas, regados con agua del río Bogotá. Rev. Colomb. Cienc. Hortic. 2(2), 180-191. Doi: https://doi.org/10.17584/rcch.2008v2i2.1186
  • Mohanraj, R., A. Azeez, and T. Priscilla. 2004. Heavy metals in airborne particulate matter of urban Coimbatore. Arch. Environ. Contam. Toxicol. 47, 162-167. Doi: https://doi.org/10.1007/s00244-004-3054-9
  • Mora, A., M. García-Gamboa, M.S. Sánchez-Luna, L. Gloria-García, P. Cervantes-Avilés, and J. Mahlknecht. 2021. A review of the current environmental status and human health implications of one of the most polluted rivers of Mexico: The Atoyac River, Puebla. Sci. Tot. Environ. 782, 146788. Doi: https://doi.org/10.1016/j.scitotenv.2021.146788
  • Mostafidi, M., F. Shirkhan, M.T. Zahedi, P. Ziarati, B. Hochwimmer, and L. Cruz-Rodriguez. 2021. Bioaccumulation of the heavy metals contents in green leafy vegetables. J. Nutr. Food Sci Tech. 2(1), 1-7.
  • Nabulo, G., C.R. Black, J. Craigon, and S.D. Young. 2012. Does consumption of leafy vegetables grown in peri-urban agriculture pose a risk to human health? Environ. Pollut. 162, 389-398. Doi: https://doi.org/10.1016/j.envpol.2011.11.040
  • Nabulo, G., S.D. Young, and C.R. Black. 2010. Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils. Sci. Total Environ. 408(22), 5338-5351. Doi: https://doi.org/10.1016/j.scitotenv.2010.06.034
  • Nag, R. and E. Cummins. 2022. Human health risk assessment of lead (Pb) through the environmental-food pathway. Sci. Total Environ. 810, 151168. Doi: https://doi.org/10.1016/j.scitotenv.2021.151168
  • Naidu, R., B. Biswas, I.R. Willett, J. Cribb, B.K. Singh, C.P. Nathanail, F. Coulon, K.T. Semple, K.C. Jones, A. Barclay, and R.J. Aitken. 2021. Chemical pollution: a growing peril and potential catastrophic risk to humanity. Environ. Int. 156, 106616. Doi: https://doi.org/10.1016/j.envint.2021.106616
  • Niu, L., C. Li, W. Wang, J. Zhang, M. Scali, W. Li, H. Liu, F. Tai, X. Hu, and X. Wu. 2023. Cadmium tolerance and hyperaccumulation in plants – A proteomic perspective of phytoremediation. Ecotoxicol. Environ. Saf. 256, 114882. Doi: https://doi.org/10.1016/j.ecoenv.2023.114882
  • Noonan, E. and M.-S. A. Barreau. 2021. Urban farming: A gateway to greater food security? Strategic Foresight and Capabilities Unit. PE 679.091. European Parliamentary Research Service (EPRS), Brussels.
  • Noyes, P.D., M.K. McElwee, H.D. Miller, B.W. Clark, L.A. van Tiem, K.C. Walcott, K.N. Erwin, and E.D. Levin. 2009. The toxicology of climate change: environmental contaminants in a warming world. Environ. Int. 35(6), 971-986. Doi: https://doi.org/10.1016/j.envint.2009.02.006
  • Olivares, S., D. García, L. Lima, I. Saborit, A. Llizo, and P. Pérez. 2013. Niveles de cadmio, plomo, cobre y zinc en hortalizas cultivadas en una zona altamente urbanizada de la ciudad de La Habana, Cuba. Rev. Int. Contam. Ambient. 29(4), 285-294.
  • Pachón, J.E. and H. Sarmiento. 2008. Análisis espacio-temporal de la concentración de metales pesados en la localidad de Puente Aranda de Bogotá-Colombia. Rev. Fac. Ing. Univ. Antioquia (43), 120-133.
  • Page, M.J., J.E. McKenzie, P.M. Bossuyt, I. Boutron, T.C. Hoffmann, C.D. Mulrow, L. Shamseer, J.M. Tetzlaff, E.A. Akl, S.E. Brennan, R. Chou, J.M. Glanville, J.M. Grimshaw, A. Hróbjartsson, M.M. Lalu, T. Li, E.W. Loder, E. Mayo-Wilson, S. McDonald, L.A. McGuinness, L.A. Stewart, J. Thomas, A.C. Tricco, V.A. Welch, P. Whiting, and D. Moher. 2021. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, n71. Doi: https://doi.org/10.1136/bmj.n71
  • Panhwar, A., K. Faryal, A. Kandhro, S. Bhutto, U. Rashid, N. Jalbani, R. Sultana, A. Solangi, M. Ahmed, S. Qaisar, Z. Solangi, M. Gorar, and E. Sargani. 2022. Utilization of treated industrial wastewater and accumulation of heavy metals in soil and okra vegetable. Environ. Chall. 6, 100447. Doi: https://doi.org/10.1016/j.envc.2022.100447
  • Pavao-Zuckerman, P.M.A. 2008. The nature of urban soils and their role in ecological restoration in cities. Restor. Ecol. 16(4), 642-649. Doi: https://doi.org/10.1111/j.1526-100X.2008.00486.x
  • Pokharel, A. and F. Wu. 2023. Dietary exposure to cadmium from six common foods in the United States. Food Chem. Toxicol. 178, 113873. Doi: https://doi.org/10.1016/j.fct.2023.113873
  • Rai, P.K., S.S. Lee, M. Zhang, Y.F. Tsang, and K.-H. Kim. 2019. Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ. Int. 125, 365-385. Doi: https://doi.org/10.1016/j.envint.2019.01.067
  • Rengel, Z., I. Cakmak, and P. White (eds.). 2022. Marschner´s mineral nutrition of plants. 4th ed. Elsevier, Amsterdam.
  • Rodrigues, A.A.Z., M.E.L.R. Queiroz, A.F. Oliveira, A.A. Neves, F.F. Heleno, L. Zambolim, J.F. Freitasa, and E.H.C. Morais. 2017. Pesticide residue removal in classic domestic processing of tomato and its effects on product quality. J. Environ. Sci. Health. Part. B, 52(12), 850-857. Doi: https://doi.org/10.1080/03601234.2017.1359049
  • Ruan, X., S. Ge, Z. Jiao, W. Zhan, and Y. Wang. 2023. Bioaccumulation and risk assessment of potential toxic elements in the soil-vegetable system as influenced by historical wastewater irrigation. Agric. Water Manag. 279, 108197. Doi: https://doi.org/10.1016/j.agwat.2023.108197
  • Sandeep, G., K.R. Vijayalatha, and T. Anitha. 2019. Heavy metals and its impact in vegetable crops. Int. J. Chem. Stud. 7(1), 1612-1621.
  • Santamouris, M. 2015. Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Sci. Total Environ. 512-513, 582-598. Doi: https://doi.org/10.1016/j.scitotenv.2015.01.060
  • Säumel, I., I. Kotsyuk, M. Hölscher, C. Lenkereit, F. Weber, and I. Kowarik. 2012. How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany. Environ. Pollut. 165, 124-132. Doi: https://doi.org/10.1016/j.envpol.2012.02.019
  • Savvas, D., G. Ntatsi, and P. Barouchas. 2013. Impact of grafting and rootstock genotype on cation uptake by cucumber (Cucumis sativus L.) exposed to Cd or Ni stress. Sci. Hortic. 149, 86-96. Doi: https://doi.org/10.1016/j.scienta.2012.06.030
  • Sharma, R.K., M. Agrawal, and F.M. Marshall. 2009. Heavy metals in vegetables collected from production and market sites of a tropical urban area in India. Food Chem. Toxicol. 47(3), 583-591. Doi: https://doi.org/10.1016/j.fct.2008.12.016
  • Shukla, L. and N. Jain. 2022. A review on soil heavy metals contamination: effects, sources and remedies. Appl. Ecol. Environ. Sci. 10(1), 15-18.
  • Tadeo, F.R. and A. Gómez-Cadenas. 2008. Fisiología de las plantas y el estrés. pp. 577-597. In: Azcón-Bieto, J. and M. Talón (eds.). Fundamentos de fisiología vegetal. 2nd ed. McGraw-Hill Interamericana, Madrid.
  • Thakali, A. and J.D. MacRae. 2021. A review of chemical and microbial contamination in food: what are the threats to a circular food system? Environ. Res. 194, 110635. Doi: https://doi.org/10.1016/j.envres.2020.110635
  • Tomno, R.M., J.K. Nzeve, S.N. Mailu, D. Shitanda, and F. Waswa. 2020. Heavy metal contamination of water, soil and vegetables in urban streams in Machakos municipality, Kenya. Sci. Afr. 9, e00539. Doi: https://doi.org/10.1016/j.sciaf.2020.e00539
  • Ulpiani, G. 2021. On the linkage between urban heat island and urban pollution island: three-decade literature review towards a conceptual framework. Sci. Total Environ. 751, 141727. Doi: https://doi.org/10.1016/j.scitotenv.2020.141727
  • Umar, S., Moinuddin, and M. Iqbal. 2005. Heavy metals: availability, accumulation and toxicity to plants. pp. 325-343. In: Dwivedi, P. and R.S. Dwivedi (eds.). Physiology of abiotic stress in plants. Agrobios, Jodhpur, India.
  • United Nations. 2019. The sustainable development goals report. New York, NY.
  • United Nations. 2020. Las ciudades y la contaminación contribuyen al cambio climático. In: https://www.un.org/es/climatechange/climate-solutions/cities-pollution; consulted: September, 2020.
  • Vallejo, F.A. and E.I. Estrada. 2004. Producción de hortalizas de clima cálido. Universidad Nacional de Colombia, Palmira, Colombia.
  • Vega, L.T. and D.A. Vega. 2021. Contenidos de plomo en hortalizas cultivadas en huertos urbanos de la ciudad de Bogotá, Colombia. Idesia 39(4), 129-137. Doi: http://doi.org/10.4067/S0718-34292021000400129
  • Velasco, M. 2005. La calidad del aire asociado con metales pesados en la ciudad de Manizales. Undergraduate thesis. Especialización en Ingeniería Ambiental, Universidad Nacional de Colombia, Manizales, Colombia.
  • Waffle, A.D., R.C. Corry, T.J. Gillespie, and R.D. Brown. 2017. Urban heat islands as agricultural opportunities: an innovative approach. Landsc. Urban Plann. 161, 103-114. Doi: http://doi.org/10.1016/j.landurbplan.2017.01.010
  • Wan, K., H. Lv, W. Qasim, L. Xia, Z. Yao, J. Hu, Y. Zhao, X. Ding, X. Zheng, G. Li, S. Lin, and K. Butterbach-Bahl. 2022. Heavy metal and nutrient concentrations in top- and sub-soils of greenhouses and arable fields in East China – Effects of cultivation years, management, and shelter. Environ. Pollut. 307, 119494. Doi: https://doi.org/10.1016/j.envpol.2022.119494
  • Wang, Q., Q. Zhou, L. Huang, S. Xu, Y. Fu, D. Hou, Y. Feng, and X. Yang. 2022. Cadmium phytoextraction through Brassica juncea L. under different consortia of plant growth-promoting bacteria from different ecological niches. Ecotoxicol. Environ. Saf. 237, 113541. Doi: https://doi.org/10.1016/j.ecoenv.2022.113541
  • Weidner, T., A. Yangand, and M.W. Hamm. 2019. Consolidating the current knowledge on urban agriculture in productive urban food systems: learnings, gaps and outlook. J. Clean. Prod. 209, 1637-1655. Doi: https://doi.org/10.1016/j.jclepro.2018.11.004
  • Wenning, R.J., S.E. Finger, L. Guilhermino, R.C. Helm, M.J. Hooper, W.G. Landis, C.A. Menzie, W.R. Munns Jr., J. Römbke, and R.G. Stahl Jr. 2010. Global climate change and environmental contaminants: a SETAC call for research. Integr. Environ. Assess. Manage. 6(2), 197-198. Doi: https://doi.org/10.1002/ieam.49
  • Wierzbicka, M., K. Bodzon, A. Naziębło, Z. Tarnawska, M. Wróbel, K. Brzost, and D. Panufnik-Mędrzycka. 2023. Reducing lead uptake by plants as a way to lead-free food. Ecotoxicol. Environ. Saf. 256, 114875. Doi: https://doi.org/10.1016/j.ecoenv.2023.114875
  • WHO, World Health Organization. 2020. Food safety. In: https://www.who.int/news-room/fact-sheets/detail/food-safety; consulted: May, 2023.
  • WHO, World Health Organization. 2021. Nutrition – Data and statistics. In: https://www.who.int/europe/news-room/photo-stories/item/data-and-statistics; consulted: April, 2023.
  • Wu, Z., Y. Chen, Z. Yang, Y. Liu, Y. Zhu, Z. Tong, and R. An. 2023. Spatial distribution of lead concentration in peri-urban soil: threshold and interaction effects of environmental variables. Geoderma 429, 116193. Doi: https://doi.org/10.1016/j.geoderma.2022.116193
  • Xin, J., B. Huang, H. Dai, W. Zhou, Y. Yi, and L. Peng. 2015. Roles of rhizosphere and root-derived organic acids in Cd accumulation by two hot pepper cultivars. Environ. Sci. Pollut. Res. 22, 6254-6261. Doi: https://doi.org/10.1007/s11356-014-3854-z
  • Xu, Y., X. Sun, Q. Zhang, X. Li, and Z. Yan. 2018. Iron plaque formation and heavy metal uptake in Spartina alterniflora at different tidal levels and waterlogging conditions. Ecotoxicol. Environ. Saf. 153, 91-100. Doi: https://doi.org/10.1016/j.ecoenv.2018.02.008
  • Yadav, R.S. 2021. Health risk due to heavy metals-vegetables. Int. J. Res. Analyt. Rev. 8(4), 374-377.
  • Yahaya, S.M., A.A. Mahmud, and N. Abdu. 2023. The use of wastewater for irrigation: pros and cons for human health in developing countries. Total Environ. Res. Themes 6, 100044. Doi: https://doi.org/10.1016/j.totert.2023.100044
  • Yang, N.-H.N. and A. Yang. 2022. Urban bioeconomy: uncovering its components, impacts and the urban bio-symbiosis. Clean. Prod. Lett. 3, 100015. Doi: https://doi.org/10.1016/j.clpl.2022.100015
  • Yang, Y., F.S. Zhang, H.F. Li, and R.F. Jiang. 2009. Accumulation of cadmium in the edible parts of six vegetable species grown in Cd-contaminated soils. J. Environ. Manag. 90(2), 1117-1122. Doi: https://doi.org/10.1016/j.jenvman.2008.05.004
  • Yu, X., H. Li, Q. Yang, Z. Sun, and Y. Ma. 2023. Accumulation of Cr in different vegetables and derivation of soil Cr threshold using the species sensitivity distribution method. Ecotoxicol. Environ. Saf. 258, 114993. Doi: https://doi.org/10.1016/j.ecoenv.2023.114993
  • Yu, H., M. Lin, W. Peng, and C. He. 2022. Seasonal changes of heavy metals and health risk assessment based on Monte Carlo simulation in alternate water sources of the Xinbian River in Suzhou City, Huaibei Plain, China. Ecotoxicol. Environ. Saf. 236, 113445. Doi: https://doi.org/10.1016/j.ecoenv.2022.113445
  • Zhao, P., M. Ma, Y. Hu, W. Wu, and J. Xiao. 2022. Comparison of international standards for irrigation with reclaimed water. Agric. Water Manag. 274, 107974. Doi: https://doi.org/10.1016/j.agwat.2022.107974
  • Zhou, R., L. Niu, J. Yin, F. Jiang, Y. Wang, T. Zhao, Z. Wu, and W. Zhu. 2023. Differences in physiological responses of two tomato genotypes to combined waterlogging and cadmium stresses. Antioxidants 12(6), 1205. Doi: https://doi.org/10.3390/antiox12061205
  • Zhou, H., W.T. Yang, X. Zhou, L. Liu, J.-F., Gu, W.-L. Wang, J.-L. Zou, T. Tian, P.-Q. Peng, and B.-H. Liao. 2016. Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. Int. J. Environ. Res. Pub. Health 13(3), 289. Doi: https://doi.org/10.3390/ijerph13030289
  • Zulfiqar, U., M. Farooq, S. Hussain, M. Maqsood, M. Hussain, M. Ishfaq, M. Ahmad, and M.Z. Anjum. 2019. Lead toxicity in plants: impacts and remediation. J. Environ. Manage. 250, 109557. Doi: https://doi.org/10.1016/j.jenvman.2019.109557
  • Zwolak, A., M. Sarzyńska, E. Szpyrka, and K. Stawarczyk. 2019. Sources of soil pollution by heavy metals and their accumulation in vegetables: a review. Water Air Soil Pollut. 230, 164. Doi: https://doi.org/10.1007/s11270-019-4221-y

Downloads

Download data is not yet available.

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 > >>