Skip to main navigation menu Skip to main content Skip to site footer

Postharvest physicochemical aspects of Campomanesia lineatifolia R. & P. fruit, a Myrtaceae with commercial potential

Ripe champa (Campomanesia lineafifolia R. & P.) fruit harvested in the municipality of Miraflores, Colombia. Photo: A.L. Balaguera

Abstract

Champa (Campomanesia lineatifolia R. & P) is a fruit with an exquisite taste and pleasant aroma, with high commercial potential because its flavor and nutritional composition, but it is highly perishable, and various aspects of its physiology are still unknown. The objective was to study the behavior of champa fruit during postharvest. Fruit were collected directly from trees when they were 100% yellow; then, they were stored at 22°C and 80% relative humidity. The variables were measured over four days. The fruit presented a climacteric behavior with a drastic increase in respiration on the second day after harvest, accompanied by an increase in ethylene production. Firmness decreased continuously and reached values of 1.5±0.14 N at the end. Weight loss increased and was 7.88±0.45% on day 4. Soluble solids increased until climacteric and then decreased. The pH decreased, and the total acidity increased. The color index increased and reached a value of 2.12±0.80. The polygalacturonase activity increased until the third day and subsequently decreased. The activity of this enzyme was related to the loss of firmness. Citric acid was the predominant acid and increased continuously postharvest. In the end, malic and oxalic acid decreased, and succinic had a slight increase. The predominant sugar was sucrose, followed by fructose and glucose. Sucrose presented a high value (61.42±11.6 mg g-1 of fresh weight) on day 1 after harvest; this value decreased on the second day, remained stable on day 3, and then increased for day 4. Glucose and fructose had the lowest values on the first day, which increased in a representative way on day 2, stabilized on day 3, and again increased until day 4. At this point, they had the highest concentration with 24.75±0.71 mg g-1 for glucose and 42.22±0.96 mg g-1 for fructose. These results contribute to the understanding of the postharvest behavior of this species.

Keywords

Ripening, Ethylene, Climateric fruit, Softening

PDF

References

  1. Abreu, L.A.F., R. Paiva, J.G.A, Mosqueira, M.V. Reis, A.B.S. Araújo, and E.V.B Vilas Boas. 2020. Antioxidant activity and physico-chemical analysis of Campomanesia rufa (O. Berg) Nied. fruits. Ciênc. Agrotec. 44, e016720. Doi: https://doi.org/10.1590/1413-7054202044016720
  2. Abu-Goukh, A.-B.A. and H.A. Bashir. 2003. Changes in pectic enzymes and cellulose activity during guava fruit ripening. Food Chem. 83, 213-218. Doi: https://doi.org/10.1016/S0308-8146(03)00067-0
  3. Alós, E., M.J. Rodrigo, and L. Zacarias. 2019. Ripening and senescence. pp. 131-155. In: Yahia, E.M. and A. Carrillo-López (eds.). Postharvest physiology and biochemistry of fruit and vegetables. Elsevier, Kidlington, UK. Doi: https://doi.org/10.1016/B978-0-12-813278-4.00007-5
  4. Álvarez-Herrera, J.G., H.E. Balaguera-López, and J.F. Cárdenas. 2009b. Caracterización fisiológica del fruto de champa (Campomanesia lineatifolia Ruiz. & Pavón), durante la poscosecha. Rev. UDCA Act. Div. Cient. 12(2), 125-134. Doi: https://doi.org/10.31910/rudca.v12.n2.2009.698
  5. Álvarez-Herrera, J.G., J.A. Galvis, and H.E. Balaguera-López. 2009a. Determinación de cambios físicos y químicos durante la maduración de frutos de champa (Campomanesia lineatifolia R. & P.). Agron. Colomb. 27(2), 253-259.
  6. Ávila, H., J. Cuspoca, G. Fischer, G. Ligarreto, and M. Quicazán. 2007. Caracterización fisicoquímica y organoléptica del fruto de agraz (Vaccinium meridionale Sw) almacenado a 2 ºC. Rev. Fac. Nal. Agr. Medellín 60(2), 4179-4193.
  7. Balaguera-López, H.E. and A. Herrera. 2012a. Estudio de algunos cambios bioquímicos durante el crecimiento y hasta la cosecha del fruto de champa (Campomanesia lineatifolia R. & P. Familia Myrtaceae). Rev. Bras. Frutic. 34(2), 460-468. Doi: https://doi.org/10.1590/S0100-29452012000200019
  8. Balaguera-López, H.E. and A. Herrera. 2012b. Determining optimal harvest point for champa (Campomanesia lineatifolia R. & P.) fruit based on skin color. Ing. Investig. 32(1), 88-93.
  9. Balaguera-López, H.E., J.G. Álvarez-Herrera, and D.C. Bonilla. 2009. Crecimiento y desarrollo del fruto de champa (Campomanesia lineatifolia Ruiz & Pavón). Rev. UDCA Act. Div. Cient. 12(2), 113-123. Doi: https://doi.org/10.31910/rudca.v12.n2.2009.697
  10. Botton, A., P. Tonutti, and B. Ruperti. 2019. Biology and biochemistry of ethylene. pp. 93-112. In: Yahia, E.M. (ed.). Postharvest physiology and biochemistry of fruit and vegetables. Elsevier, Kidlington, UK. Doi: https://doi.org/10.1016/B978-0-12-813278-4.00005-1
  11. Buitrago, S., M. Leandro, and G. Fischer. 2021. Symptoms and growth components of feijoa (Acca sellowiana [O. Berg] Burret) plants in response to the missing elements N, P, and K. Rev. Colomb. Cienc. Hortic. 15(3), e13159. https://doi.org/10.17584/rcch.2021v15i3.13159
  12. Carrillo, M.P., M.S. Hernández, J. Barrera, O. Martínez, and J.P. Fernández-Trujillo. 2011. 1-Methylcyclopropene delays arazá ripening and improves postharvest fruit quality. LWT Food Sci. Technol. 44(1), 250-255. Doi: https://doi.org/10.1016/j.lwt.2010.05.029
  13. Castellanos, D.A., D.R. Herrera, and A.O. Herrera. 2016a. Modelling water vapour transport, transpiration and weight loss in a perforated modified atmosphere packaging for feijoa fruits. Biosyst. Eng. 151, 218-230. Doi: https://doi.org/10.1016/j.biosystemseng.2016.08.015
  14. Castellanos, D.A., W. Polanía, and A.O. Herrera. 2016b. Development of an equilibrium modified atmosphere packaging (EMAP) for feijoa fruit and modeling firmness and color evolution. Postharvest Biol. Technol. 120, 193-203. Doi: https://doi.org/10.1016/j.postharvbio.2016.06.012
  15. Chen, F.X., X.-H. Liu, and L.-S. Chen. 2009. Developmental changes in pulp organic acid concentration and activities of acid-metabolising enzymes during the fruit development of two loquat (Eriobotrya japonica Lindl.) cultivars differing in fruit acidity. Food Chem. 114(2), 657-664. Doi: https://doi.org/10.1016/j.foodchem.2008.10.003
  16. Díaz-Pérez, J.C. 2019. Transpiration. pp. 157-174. In: Yahia, E.M. and A. Carrillo-López (eds.). Postharvest physiology and biochemistry of fruit and vegetables. Elsevier, Kidlington, UK. Doi: https://doi.org/10.1016/B978-0-12-813278-4.00008-7
  17. Do Santos, M.A., A.C. Costa, C.A. Megguer, J.S. Lima, Y.G.S. Carvalho, S.L. Rezende-Silva, and P.F. Batista. 2021. Post-harvest quality of Campomanesia adamantium (Cambess.) O. Berg. in function of storage temperature. Acta Scient. Technol. 43, e48979. Doi: https://doi.org/10.4025/actascitechnol.v43i1.48979
  18. Dubois, M., L. Van den Broeck, and D. Inzé. 2018. The pivotal role of ethylene in plant growth. Trends Plant Sci. 23(4), 311-323. Doi: https://doi.org/10.1016/j.tplants.2018.01.003
  19. Espinal, M. 2010. Capacidad antioxidante y ablandamiento de la guayaba palmira ICA I (Psidium guajava). MSc thesis. Universidad Nacional de Colombia, Bogota.
  20. Etienne, A., M. Génard, P. Lobit, D. Mbeguié-A-Mbéguié, and C. Bugaud. 2013. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Exp. Bot. 64(6), 1451-1469. Doi: https://doi.org/10.1093/jxb/ert035
  21. Fischer, G. and A. Parra-Coronado. 2020. Influence of some environmental factors on the feijoa (Acca sellowiana [Berg] Burret) crop. A review. Agron. Colomb. 38(3), 388-397. Doi: https://doi.org/10.15446/agron.colomb.v38n3.8898
  22. Fischer, G. and L.M. Melgarejo. 2021. Ecophysiological aspects of guava (Psidium guajava L.). A review. Rev. Colomb. Cienc. Hortic. 15(2), e12355. Doi: https://doi.org/10.17584/rcch.2021v15i2.12355
  23. Fischer, G., A. Parra-Coronado, and H.E. Balaguera-López. 2020. Aspectos del cultivo y de la fisiología de feijoa (Acca sellowiana [Berg] Burret). Una revisión. Cien. Agri. 17(3), 11-24. Doi: https://doi.org/10.19053/01228420.v17.n3.2020.11386
  24. Fischer, G., C. Ulrichs, and G. Ebert. 2015. Contents of non-structural carbohydrates in the fruiting cape gooseberry (Physalis peruviana L.) plant. Agron. Colomb. 33(2), 155-163. Doi: https://doi.org/10.15446/agron.colomb.v33n2.515462
  25. González, A.K., L.F. González-Martínez, L.D. Córdoba, A. Rincón, and H.E. Balaguera-López. 2021. Regulating the postharvest life of Campomanesia lineatifolia R. & P. fruit through the interaction of ethylene, 1-methylcyclopropene and low temperatures. Rev. Colomb. Cienc. Hortic. 15(2), e12499. Doi: https://doi.org/10.17584/rcch.2021v15i2.12499
  26. Hernández, M.S. 2001. Conservación del fruto de arazá (Eugenia stipitata Mc Vaugh) durante la poscosecha mediante la aplicación de diferentes técnicas. PhD thesis. Universidad Nacional de Colombia, Bogota.
  27. Hernández, M.S., O. Martínez, and J.P. Fernández-Trujillo. 2007. Behavior of arazá (Eugenia stipitata Mc Vaugh) fruit quality traits during growth, development and ripening. Sci. Hortic. 111(3), 220-227. Doi: https://doi.org/10.1016/j.scienta.2006.10.029
  28. ICTA, Instituto Colombiano de Ciencia y Tecnología de Alimentos. 2006. Manual de procedimientos-frutas. Universidad Nacional de Colombia, Bogota.
  29. Kader, A.A. (ed.). 2002. Postharvest technology of horticultural crops. 3rd ed. University of California (System)-Division of Agriculture and Natural Resources, Davis, CA.
  30. Kumari, P., A. Mankar, K. Karuna, F. Homa, K. Meiramkulova, and M.W. Siddiqui. 2020. Mineral composition, pigments, and postharvest quality of guava cultivars commercially grown in India. J. Agric. Food Res. 2, 100061. Doi: https://doi.org/10.1016/j.jafr.2020.100061
  31. Lufu, R., A. Ambaw, and U.L. Opara. 2019. The contribution of transpiration and respiration processes in the mass loss of pomegranate fruit (cv. Wonderful). Postharvest Biol. Technol. 157, 110982. Doi: https://doi.org/10.1016/j.postharvbio.2019.110982
  32. Márquez, C.J., C.M. Otero, and M. Cortés, 2007. Cambios fisiológicos, texturales, fisicoquímicos y microestructurales del tomate de árbol (Cyphomandra betacea S.) en poscosecha. Vitae 14(2), 9-16.
  33. Menéndez, O., S.E. Lozano, M. Arenas, K. Bermúdez, A. Martínez, and A. Jiménez. 2006. Cambios en la actividad de α-amilasa, pectinmetilesterasa y poligalacturonasa durante la maduración del maracuyá amarillo (Passiflora edulis var. Flavicarpa Degener). Interciencia 31(10), 728-733.
  34. Mercado-Silva, E., P. Benito-Bautista, and M.A. Garcia-Velasco. 1998. Fruit development, harvest index and ripening changes of guavas produced in central México. Postharvest Biol. Technol. 13(2), 143-150. Doi: https://doi.org/10.1016/S0925-5214(98)00003-9
  35. Mondal, K., A.P. Singh, N. Saxena, S.P. Malhotra, K. Dhawan, and R. Singh. 2008. Possible interactions of polyamines and ethylene during ripening of guava (Psidium guajava L.) fruit. J. Food Biochem. 32(1), 46-59. Doi: https://doi.org/10.1111/j.1745-4514.2007.00145.x
  36. Novoa, R.H., M. Bojacá, J.A. Galvis, and G. Fischer. 2006. La madurez del fruto y el secado del cáliz influyen en el comportamiento poscosecha de la uchuva, almacenada a 12°C (Physalis peruviana L.). Agron. Colomb. 24(1), 77-86.
  37. Pan, T., M.M., Ali, J. Gong, W. She, D. Pan, Z. Guo, Y. Yu, and F. Chen. 2021. Fruit physiology and sugar-acid profile of 24 pomelo (Citrus grandis (L.) Osbeck) cultivars grown in subtropical region of China. Agronomy 11(12), 2393. https://doi.org/10.3390/agronomy11122393
  38. Pareek, S. 2016. Ripening physiology: An overview. pp. 1-48. In: Pareek, S. (ed.). 2016. Postharvest ripening physiology of crops. CRC Press, Boca Raton, FL. Doi: https://doi.org/10.1201/b19043
  39. Parra-Coronado, A., G. Fischer, and J.H. Camacho-Tamayo. 2015. Development and quality of pineapple guava fruit in two locations with different altitudes in Cundinamarca, Colombia. Bragantia 74(3), 359-366. Doi: https://doi.org/10.1590/1678-4499.0459
  40. Parra-Coronado, A., G. Fischer, and J.H. Camacho-Tamayo. 2018. Post-harvest quality of pineapple guava [Acca sellowiana (O. Berg) Burret] fruits produced in two locations of Cundinamarca, Colombia, at different altitudes. Agron. Colomb. 36(1), 68-78. Doi: https://doi.org/10.15446/agron.colomb.v36n1.68577
  41. Parra-Coronado, A., G. Fischer, H.E. Balaguera-López, and L.M. Melgarejo. 2022. Sugar and organic acids content in feijoa (Acca sellowiana) fruits, grown at two altitudes. Rev. Cienc. Agric. 39(1), 55-69. Doi:
  42. https://doi.org/10.22267/rcia.223901.173
  43. Porras, Y.C., M.C. Pedreros, W.L. Reyes, and H.E. Balaguera-Lopez. 2020. Efecto de la luz sobre la germinación de semillas de champa (Campomanesia lineatifolia R. & P.). Cien. Agri. 17(2), 23-31. Doi: https://doi.org/10.19053/01228420.v17.n2.2020.10979
  44. Reyes, A.I., H.G. Núñez, G. Hernández, A.G. Alpuche, C. Garcidueñas, and J.F. Morales. 2013a. ADNc relacionados con la maduración del fruto de guayaba (Psidium guajava L.). Caracterización y análisis de expresión. Rev. Fitotec. Mex. 36(2), 117-125. Doi: https://doi.org/10.35196/rfm.2013.2.117
  45. Rizzon, L.A. and V.M.A. Sganzerla. 2007. Ácidos tartárico e málico no mosto de uva em Bento Gonçalves-RS. Ciênc. Rural 37(3), 911-914. Doi: https://doi.org/10.1590/S0103-84782007000300053
  46. Rodríguez, M., H.E. Arjona, and J.A. Galvis. 2006. Maduración del fruto de feijoa (Acca sellowiana Berg) en los clones 41 (Quimba) y 8-4 a temperatura ambiente en condiciones de Bogotá. Agron. Colomb. 24(1), 68-76.
  47. Saltveit, M.E. 2019. Respiratory metabolism. pp. 73-91. In: Yahia, E.M. and A. Carrillo-López (eds.). Postharvest physiology and biochemistry of fruit and vegetables. Elsevier, Kidlington, UK. Doi: https://doi.org/10.1016/B978-0-12-813278-4.00004-X
  48. Sañudo-Barajas, J.A., L. Lipan, M. Cano-Lamadrid, R. Vélez de la Rocha, L. Noguera-Artiaga, L. Sánchez-Rodríguez, Á.A. Carbonell-Barrachina, and F. Hernández. 2019. Texture. pp. 293-314. In: Yahia, E.M. and A. Carrillo-López (eds.). Postharvest physiology and biochemistry of fruit and vegetables. Elsevier, Kidlington, UK. Doi: https://doi.org/10.1016/B978-0-12-813278-4.00014-2
  49. Silva, E.P., A.F.L. Cardoso, C. Fante, C.M. Rosell, and E.V.B.V. Boas. 2013b. Effect of postharvest temperature on the shelf life of gabiroba fruit (Campomanesia pubescens). Food Sci. Technol. 33(4), 632-637. Doi: https://doi.org/10.1590/S0101-20612013000400006
  50. Silva, E.P., E.V. Boas, L.J. Rodrigues, and H.H. Siqueira. 2009. Caracterização física, química e fisiológica de gabiroba (Campomanesia pubescens) durante o desenvolvimento. Food Sci. Technol. 29(4), 803-809. Doi: https://doi.org/10.1590/S0101-20612009000400016
  51. Tang, M., Z.-I. Bie, M.-Z. Wu, H.-P. Yi, and J.-X. Feng. 2010. Changes in organic acids and acid metabolism enzymes in melon fruit during development. Sci. Hortic. 123(3), 360-365. Doi: https://doi.org/10.1016/j.scienta.2009.11.001
  52. Vallarino, J.G. and S. Osorio. 2019. Organic acids. pp. 207-224. In: Yahia, E.M. and A. Carrillo-López (eds.). Postharvest physiology and biochemistry of fruit and vegetables. Elsevier, Kidlington, UK. Doi: https://doi.org/10.1016/B978-0-12-813278-4.00010-5
  53. Villachica, H. 1996. Frutales y hortalizas promisorios del Amazonas: tratado de cooperación amazónica. Secretaría Pro Tempore; FAO; PNUD, Lima. pp. 181-185.
  54. Villamizar, F., A. Ramírez, and M. Menes. 1993. Estudio de la caracterización física, morfológica y fisiológica poscosecha de la uchuva (Physalis peruviana L.). Agro-Desarrollo 4(1-2), 305-320.
  55. Wills, R.B.H. and J.B. Golding. 2016. Postharvest. An introduction to the physiology and handling of fruit and vegetables. 6th ed. Centre for Agriculture and Bioscience International, Wallingford, UK. Doi: https://doi.org/10.1079/9781786391483.0000

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 > >>