Skip to main navigation menu Skip to main content Skip to site footer

Determining of thermal time and base temperature during the reproductive phase of the Japanese plum in the tropical Andes

Ripe Japanese plum fruit cv. Horvin. Photo: M. Orjuela-Angulo

Abstract

Climate factors affect the phenological behavior of Japanese plum (Prunus salicina Lindl.) cultivation in tropical elevation. Thermal time is more precise than chronological time for the cultivation labor program and for the estimation of crop phenological events. The objective of this study was to determine the base temperature (Tb) and thermal time for the development of the 'Horvin' plum fruit, estimating the Tb for the reproductive phenological phase of the plum. Twenty trees, consisting of ten trees per rowat two different elevations of 2,195 and 2,567 m a.s.l. (meters above sea level), in the municipality of Nuevo Colon (Colombia), were marked by locality. The appearance of each phenological stage was recorded from floral bud to harvest, estimating Tb with the minimum coefficient method of variation in function of growing degree day (GDD). The results show Tb for the phenological stages floral-anthesis with 2.84°C; anthesis-fruits set, 3.05 °C, and fruit set-harvest, 1.76°C. Therefore, this variety should be grown where there is a minimum temperature of 3.05°C during the reproductive phase. In addition, the results show that an average of 1,243.17 and 1,172.12 GDD is required to go from fruit set to fruit harvest at elevations 2,195 and 2,567 m a.s.l., respectively.

Keywords

Prunus salicina, Tropical elevation, Growing degree days, Phenological phases, Minimum coefficient of variation

XML PDF

References

  1. Akbar, S.A. 2019. Evaluation of antioxidant activity on plum fruit (Prunus domestica L.) skin extract applied for natural acid-base indicator. Elkawnie: J. Islam. Sci. Technol. 5(1), 21-29. Doi: https://doi.org/10.22373/ekw.v5i1.4516
  2. Almanza-Merchán, P.J. and H.E. Balaguera-López. 2009. Determinación de los estadios fenológicos del fruto de Vitis vinifera L, bajo condiciones del altiplano tropical en Boyacá. Rev. U.D.C.A Act. Div. Cient. 12(1), 141-150.
  3. Benavides, H.O., O. Simbaqueva, and H.J. Zapata. 2017. Átlas de radiación solar, ultravioleta y ozono de Colombia. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM); Unidad de Planeación Minero Energética (UPME), Bogota.
  4. Campos, T.J. 2013. Especies y variedades de hoja caduca en Colombia. pp. 47-65. In: Miranda, D., G. Fischer, and C. Carranza (eds.). Los frutales caducifolios en Colombia – Situación actual, sistemas de cultivo y plan de desarrollo. Sociedad Colombiana de Ciencias Hortícolas, Bogota.
  5. Cepeda, A., J.E. Vélez-Sánchez, and H.E. Balaguera-López. 2021. Analysis of growth and physicochemical changes in apple cv. Anna in a high-altitude tropical climate. Rev. Colomb. Cienc. Hortic. 15(2), e12508. Doi: https://doi.org/10.17584/rcch.2021v15i2.12508
  6. Chaves, B., M.R. Salazar, T. Schmidt, N. Dasgupta, and G. Hoogenboom. 2017. Modeling apple bloom phenology. Acta Hortic. 1160, 201-206. Doi: https://doi.org/10.17660/ActaHortic.2017.1160.29
  7. Criollo-Escobar, H., M.-F. Moncayo-Palacios, and T.C. Lagos-Burbano. 2020. Phenology and growth of lulo (Solanum quitoense Lam) plants grafted onto Solanum hirtum Vahl. Rev. Colomb. Cienc. Hortic. 14(3), 291-300. Doi: https://doi.org/10.17584/rcch.2020v14i3.11005
  8. Díaz, J. 2020. Predicción de la temperatura del arrabio en la acería y evaluación de su impacto en las emisiones de CO2 mediante el desarrollo conjunto de procesos y modelos. PhD tesis. Universidad de Oviedo, Oviedo, Spain.
  9. Fischer, G., H.E. Balaguera-López, A. Parra-Coronado, and S. Magnitskiy. 2024. Adaptation of fruit trees to different elevations in the tropical Andes. pp. 193-208. In: Tripathi, S., R. Bhadouria, P. Srivastava, R. Singh, and R.S. Devi (eds.). Ecophysiology of tropical plants – recent trends and future perspectives. CRC Press, Boca Raton, FL.
  10. Fischer, G., G. Ebert, and P. Lüdders. 2007. Production, sedes and carbohydrate contents of cape gooseberry (Physalis peruviana L.) fruits grown at two contrasting Colombian altitudes. J. Appl. Bot. Food Qual. 81(1), 29-35.
  11. Fischer, G., A. Parra-Coronado, and H.E. Balaguera-López. 2022. Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agron. Colomb. 40(2), 212-227. Doi: https://doi.org/10.15446/agron.colomb.v40n2.101854
  12. González-Romero, J., M.E. Lucas-Borja, P.A. Plaza-Álvarez, J. Sagra, D. Moya, and J. De Las Heras. 2018. Temporal effects of post-fire check dam construction on soil functionality in SE Spain. Sci. Total Environ.642, 117-124.
  13. Gutiérrez-Villamil, D.A., J.G. Álvarez-Herrera, G. Fischer, and H.E. Balaguera-López. 2024. Physiological adaptations of the Japanese plum tree for agricultural productivity: a promising crop for high altitude tropics. Agron. Colomb. 42(1), e111402. Doi: https://doi.org/10.15446/agron.colomb.v42n1.111402
  14. Kukal, M.S. and S. Irmak. 2018. U.S. Agro-Climate in 20th Century: growing degree days, first and last frost, growing season length, and impacts on crop yields. Sci. Rep. 8(1), 6977. Doi: https://doi.org/10.1038/s41598-018-25212-2
  15. Leguízamo-Medina, M.F., E.H. Pinzón-Sandoval, and H.E. Balaguera-López. 2022. Phenology analysis growing and degree days of flower bud growth in three Dianthus caryophyllus L. varieties under greenhouse conditions. Rev. Colomb. Cienc. Hortic. 16(3), e15296. https://doi.org/10.17584/rcch.2022v16i3.15296
  16. León-Burgos, A.F., C. Ramírez, J.R. Rendón, L.C. Imbachi-Quinchua, C.A. Unigarro-Muñoz, and H.E. Balaguera-López. 2022. Fitting growth curves of coffee plants in the nursery stage of growth: a functional approach. Agron. Colomb. 40(3), 344-353. https://doi.org/10.15446/agron.colomb.v40n3.101333
  17. López, M.A., B. Chaves, and V.J. Flórez. 2014. Modelo del crecimiento potencial de clavel estándar cv. Delphi. Agron. Colomb. 32(2), 196-204. Doi: https://doi.org/10.15446/agron.colomb.v32n2.43737
  18. Lysiak, G. 2012. The sum of active temperatures as a method of determining the optimum harvest date of ’Sampion’ and ‘Ligol’ apple cultivars. Acta Sci. Pol.-Hortoru. Cultus 11(6), 3-13.
  19. Manz, B., W. Buytaert, Z. Zulkafli, W. Lavado, B. Willems, L.A. Robles, and J.-P. Rodríguez-Sánchez. 2016. High-resolution satellite-gauge merged precipitation climatologies of the Tropical Andes. J. Geophys. Res.: Atmos. 121(3), 1190-1207. Doi: https://doi.org/10.1002/2015JD023788
  20. Mayorga, M., G. Fischer, L.M. Melgarejo, and A. Parra-Coronado. 2020. Growth, development and quality of Passiflora tripartita var. mollissima fruits under two environmental tropical conditions. J. Appl. Bot. Food Qual. 93(1), 66-75. Doi: https://doi.org/10.5073/JABFQ.2020.093.009
  21. Nicolás-Almansa, M., D. Ruiz, J.A. Salazar, A. Guevara, J. Cos, P. Martínez-Gómez, and M. Rubio. 2023. Phenotypic and molecular characterization of new interspecific Japanese plum×apricot hybrids (plumcots). Sci. Hortic. 318, 112131. Doi: https://doi.org/10.1016/j.scienta.2023.112131
  22. Orjuela-Angulo, M., J.-G. Álvarez-Herrera, and J. Camacho-Tamayo. 2024. Efecto de las condiciones climáticas sobre algunas características fisicoquímicas y fisiológicas en el crecimiento de frutos de ciruela variedad Horvin. Rev. Inv. Agr. Ambient. 15(1), 97-113. Doi: https://doi.org/10.22490/21456453.6566
  23. Orjuela-Angulo, M., A. Parra-Coronado, and J.H. Camacho-Tamayo. 2022. Base temperature for a phenological stage in plum cultivar Horvin (Prunus salicina Lindl). Rev. Colomb. Cienc. Hortic. 16(3), e15179. Doi: https://doi.org/10.17584/rcch.2022v16i3.15179
  24. Orduz-Ríos, F., K.V. Suárez-Parra, P.A. Serrano-Cely, P.C. Serrano-Agudelo, and N. Forero-Pineda. 2020. Evaluation of N-P-K-Ca-Mg dynamics in plum (Prunus salicina Lindl.) var. Horvin under nursery conditions. Rev. Colomb. Cienc. Hortic. 14(3), 334-341. Doi: https://doi.org/10.17584/rcch.2020v14i3.11941
  25. Parra-Coronado, A., G. Fischer, H.E. Balaguera-López, and L. Melgarejo. 2022. Sugar and organic acids content in feijoa (Acca sellowiana) fruits, grown at two altitudes. Rev. Cienc. Agric. 39(1), 55-69. Doi: https://doi.org/10.22267/rcia.223901.173
  26. Parra-Coronado, A., G. Fischer, and J.H. Camacho-Tamayo. 2016. Growth model of the pineapple guava fruit as a function of thermal time and altitude. Ing. Inv. 36(3), 6-14. Doi: https://doi.org/10.15446/ing.investig.v36n3.52336
  27. Parra-Coronado, A., G. Fischer, and J.H. Camacho-Tamayo. 2015b. Development and quality of pineapple guava fruit in two locations with different altitudes in Cundinamarca, Colombia. Bragantia 74(3), 359-366. Doi: https://doi.org/10.1590/1678-4499.0459
  28. Parra-Coronado, A., G. Fischer, and B. Chaves-Cordoba. 2015a. Tiempo térmico para estados fenológicos reproductivos de la feijoa (Acca sellowiana (O. Berg) Burret). Acta Biol. Colomb. 20(1), 163-173. Doi: https://doi.org/10.15446/abc.v20n1.43390
  29. Pérez de Camacaro, M., M. Ojeda, A. Giménez, M. González, and A. Hernández. 2017. Atributos de calidad en frutos de fresa 'Capitola' cosechados en diferentes condiciones climáticas en Venezuela. Bioagro 29(3), 163-174.
  30. Pérez-Planells, L., J. Delegido, J.P. Rivera-Caicedo, and J. Verrelst. 2015. Analysis of cross-validation methods for robust retrieval of biophysical parameters. Span. J. Remote Sens. (44), 55-65. Doi: https://doi.org/10.4995/raet.2015.4153
  31. Pinzón-Sandoval, E.H., H.E. Balaguera-López, and M.E. Becerra-González. 2022. Phenological and physicochemical changes during fruit development in two peach cultivars in the high tropics. Rev. U.D.C.A Act. Div. Cient. 25(1), e1942. Doi: https://doi.org/10.31910/rudca.v25.n1.2022.1942
  32. Pinzón-Sandoval, E.H., W. Pineda-Ríos, and P. Serrano-Cely. 2021. Mathematical models for describing growth in peach (Prunus persica [L.] Batsch.) fruit cv. Dorado. Rev. Colomb. Cienc. Hortic. 15(3), e13259. Doi: https://doi.org/10.17584/rcch.2021v15i3.13259
  33. Ramírez-Gil, J.G., J.C. Henao-Rojas, C.A. Diaz-Diez, A.J. Peña-Quiñones, N. Leon, A. Parra-Coronado, and J.A. Bernal-Estrada. 2023. Phenological variations of avocado cv. Hass and their relationship with thermal time under tropical conditions. Heliyon 9(9), e19642. Doi: https://doi.org/10.1016/j.heliyon.2023.e19642
  34. Ramírez-Jiménez, J.A., L.M. Hoyos-Carvajal, and O.J. Córdoba-Gaona. 2021. Phenology growth and yield of grafted tomato plants in the high Andean region of Colombia. Rev. Colomb. Cienc. Hortic. 15(1), e11667. Doi: https://doi.org/10.17584/rcch.2021v15i1.11667
  35. Salazar, M.R., J.W. Jones, B. Chaves, A. Cooman, and G. Fischer. 2008. Base temperature and simulation model for nodes appearance in cape gooseberry (Physalis peruviana L.). Rev. Bras. Frutic. 30(4), 862-867. Doi: https://doi.org/10.1590/S0100-29452008000400004
  36. Salazar-Gutiérrez, M.R., J. Johnson, B. Chaves-Cordoba, and G. Hoogenboom. 2013. Relationship of base temperature to development of winter wheat. Int. J. Plant Prod. 7(4), 741-762.
  37. Serrano, A.M., G.A. Puentes, and A. Coronado. 2021. La planificación de cosecha en ciruela variedad Horvin, estudio de caso. Tuta, Boyacá, Colombia. Criterio Libre 19(34), 126-145. Doi: https://doi.org/10.18041/1900-0642/criteriolibre.2021v19n34.7929
  38. Shivers, S.W., D.A. Roberts, and J.P. McFadden. 2019. Using paired thermal and hyperspectral aerial imagery to quantify land surface temperature variability and assess crop stress within California orchards. Remote Sens. Environ. 222, 215-231. Doi: https://doi.org/10.1016/j.rse.2018.12.030
  39. Stenzel, N.M.C., C.S.V.J. Neves, C.J. Marur, M.B.S. Scholz, and J.C. Gomes. 2006. Maturation curves and degree-day accumulation for fruits of ‘Folha Murcha’ orange trees. Sci. Agric. 63(3), 219-225. Doi: http://dx.doi.org/10.1590/S0103-90162006000300002
  40. Syropoulou, A., I. Roussis, S. Karydogianni, V. Kouneli, I. Kakabouki, A. Mavroeidis, A. Folina, D. Beslemes, and D. Bilalis. 2022. Effects of organic and inorganic fertilization on growth and yield of Physalis peruviana L. crop under Mediterranean conditions. Notulae Sci. Biol. 14(1), 11220. Doi: https://doi.org/10.15835/nsb14111220
  41. Trbic, G., T. Popov, V. Djurdjevic, I. Milunovic, T. Dejanovic, S. Gnjato, and M. Ivanisevic. 2022. Climate change in Bosnia and Herzegovina according to climate scenario RCP8.5 and possible impact on fruit production. Atmosphere 13(1), 1. Doi: https://doi.org/10.3390/atmos13010001
  42. Voronkov, A.S., T.V. Ivanova, E.I. Kuznetsova, and T.Kh. Kumachova. 2019. Adaptations of Malus domestica Borkh. (Rosaceae) fruits grown at different altitudes. Russ. J. Plant Physiol. 66(6), 922-931. Doi: https://doi.org/10.1134/S1021443719060153
  43. Woznicki, T.L., O.M. Heide, A. Sønsteby, F. Måge, and S. Remberg. 2019. Climate warming enhances flower formation, earliness of blooming and fruit size in plum (Prunus domestica L.) in the cool Nordic environment. Sci. Hortic. 257, 108750. Doi: https://doi.org/10.1016/j.scienta.2019.108750
  44. Zhang, C., H. Yi, X. Gao, T. Bai, Z. Ni, Y. Chen, M. Wang, Y. Zhang, J. Pan, W. Yu, and D. Xie. 2022. Effect of different altitudes on morpho-physiological attributes associated with mango quality. Diversity 14(10), 876. Doi: https://doi.org/10.3390/d14100876

Downloads

Download data is not yet available.

Most read articles by the same author(s)

<< < 2 3 4 5 6 7 8 > >> 

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.