Skip to main navigation menu Skip to main content Skip to site footer

Phenology analysis growing and degree days of flower bud growth in three Dianthus caryophyllus L. varieties under greenhouse conditions

Carnation var. Idilio, Ilusion and Moonlight. Photos: M.F. Leguízamo-Medina

Abstract

The production of carnations (Dianthus caryophyllus L.) in Colombia is a very important economic activity. Therefore, predicting harvests is vital for the market. The phenological behavior and growth of carnations during the flowering season in the cultivars Idilio, Ilusion, and Moon light were determined in greenhouse using a functional growth analysis. This research was based on the phenological stages and accumulation of growing degree day (GDD), relating the temperature in terms of thermal time with the development of flower buds from the rice point phenological stage to cut-off point 5. There were eight stages of carnation flower bud development; rice, pea, chickpea, barrel, star, bullet, cut point 3, and cut point 5. The fresh and dry mass of the flower buds in the three varieties presented a simple sigmoid growth pattern that was adjusted to a logistic model. There were three growth phases: phase 1, which was from the pea stage to barrel stage with accumulation of 380.7 GDD in the Idilio cultivar, 381.5 GDD for ‘Ilusion’, and 361.6 GDD for ‘Moon light’. Phase 2 ended with the bullet stage, where the accumulation was 294.4 GDD, 397.7 GDD, and 293.5 GDD for ‘Idilio’, ‘Ilusion’ and ‘Moon light’, respectively. In phase 3, ‘Idilio’ accumulated 108.9 GDD, ‘Ilusion’ had 110.8 GDD, and ‘Moon light’ showed 99.9 GDD. Moon light was the earliest cultivar, and Ilusion was the latest variety.

Keywords

Floriculture, Growing degree days, Thermal time, Growth rates, Carnation

PDF

References

  • Ahmad, L., R. Habib Kanth, S. Parvaze, and S. Sheraz Mahdi. 2017. Growing degree days to forecast crop stages. pp. 95-98. In: Experimental agrometeorology: A practical manual. Springer, Cham, Switzerland. Doi: https://doi.org/10.1007/978-3-319-69185-5_14
  • Almanza, P.J., M.A. Quijano-Rico, G. Fischer, B. Chaves C., and H.E. Balaguera-López. 2010. Physicochemical characterization of ’Pinot Noir’ grapevine (Vitis vinifera L.) fruit during its growth and development under high altitude tropical conditions. Agron. Colomb. 28(2), 173-180.
  • Arévalo, G., D. Ibarra, and V. Flórez. 2007. Desbotone en diferentes estadios de desarrollo del botón floral en clavel estándar (Dianthus caryophyllus L.) var. Nelson. Agron. Colomb. 25(1), 73-82.
  • Asocolflores. 2020. Una de las estaciones del metro de Tokio se vestirá con flores de Colombia (Newspaper). In: https://asocolflores.org/una-de-la-estaciones-del-metro-de-tokio-se-vestira-con-flores-de-colombia; consulted: december, 2022.
  • Azcón-Bieto, J. and M. Talón (eds.). 2013. Fundamentos de fisiología vegetal. 2nd ed. Interamericana McGraw-Hill, Madrid.
  • Baracaldo, A.D.P., A.I. Ovalle, V.J. Flórez, and B. Chaves. 2010. Crecimiento en clavel estándar cv. Nelson, en suelo y en sustratos. Bragantia 69(1), 1-8. Doi: https://doi.org/10.1590/s0006-87052010000100002
  • Boxriker, M., R. Boehm, N. Krezdorn, B. Rotter, and H.P. Piepho. 2017. Comparative transcriptome analysis of vase life and carnation type in Dianthus caryophyllus L. Sci. Hortic. 217, 61-72. Doi: https://doi.org/10.1016/j.scienta.2017.01.015
  • Castilla, Y., M. González, and R. Lara. 2014. Determinación de estabilidad genética en vitroplantas de clavel español (Dianthus caryophyllus L.), micropropagadas con Biobras-16. Cult. Trop. 35(1), 67-74.
  • Cepeda M., A., Vélez-Sánchez, J.E., and H.E. Balaguera-López. 2021. Analysis of growth and physicochemical changes in apple cv. Anna in a high-altitude tropical climate. Rev. Colomb. Cienc. Hortic. 15(2), e12508. Doi: https://doi.org/10.17584/rcch.2021v15i2.12508
  • Chen, C. 2019. Evaluation of the effect of temperature on a stem elongation model of Phalaenopsis. Horticulturae 5(4), 76. Doi: https://doi.org/10.3390/horticulturae5040076
  • Cleland, E.E., I. Chuine, A. Menzel, H.A. Mooney, and M.D. Schwartz. 2007. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22(7), 357-365. Doi: https://doi.org/10.1016/j.tree.2007.04.003
  • Criollo-Escobar, H., M.-F. Moncayo-Palacios, and T.C. Lagos-Burbano. 2020. Phenology and growth of lulo (Solanum quitoense Lam) plants grafted onto Solanum hirtum Vahl. Rev. Colomb. Cienc. Hortic. 14(3), 291-300. Doi: https://doi.org/10.17584/rcch.2020v14i3.11005
  • Darras, A. 2021. Overview of the dynamic role of specialty cut flowers in the international cut flower market. Horticulturae 7(3), 51. Doi: https://doi.org/10.3390/horticulturae7030051
  • Guo, G., J. Xiao, and B.R. Jeong. 2022. Iron source and medium pH affect nutrient uptake and pigment content in Petunia hybrida ‘Madness Red’ cultured in vitro. Int. J. Mol. Sci. 23(16), 8943. Doi: https://doi.org/10.3390/ijms23168943
  • Hunt, R. 2017. Growth analysis, individual plants. pp. 421-429. In: Thomas, B., B.G. Murray, and D.J. Murphy (eds.). Encyclopedia of applied plant sciences. 2nd ed. Vol. 1. Elsevier, Amsterdam. Doi: https://doi.org/10.1016/B978-0-12-394807-6.00226-4
  • Lambers, H., F.S. Chapin, and T.L. Pons. 2008. Plant physiological ecology. Springer Science+Business Media, New York, NY. Doi: https://doi.org/10.1007/978-0-387-78341-3
  • Lin, S., J. Liu, X. Zhang, M. Bao, and X. Fu. 2021. Genome-wide identification and expression analysis of WRKY gene family in Dianthus caryophyllus. Acta Hort. Sinica 48(9), 1768-1784. Doi: https://doi.org/10.16420/j.issn.0513-353x.2019-0986
  • López, M., C. Chaves, and V. Flórez. 2014. Modelo del crecimiento potencial de clavel estándar cv. Delphi. Agron. Colomb. 32(2), 196-204. Doi: https://doi.org/10.15446/agron.colomb.v32n2.43737
  • López, M.Á., B. Chaves, V. Flórez, and M. Salazar. 2010. Modelo de aparición de nudos en clavel (Dianthus caryophyllus L.) cv. Delphi cultivado en sustratos. Agron. Colomb. 28(1), 47-54.
  • Meier, U. 1997. Growth stages of mono- and dicotyledoneous plants. Blackwell Science, New York, NY.
  • Molinet-Salas, D. and E. Lescay-Batista. 2021. Fases fenológicas y componentes del rendimiento en nueve cultivares de soya (Glycine max L.) en la provincia Granma. Cult. Trop. 42(3), e02.
  • Morimoto, H., Y. Ando, H. Sugihara, T. Narumi-Kawasaki, T. Takamura, and S. Fukai. 2021. Information on flower coloration and pigmentation in current carnation cultivars for use in future flower-color breeding. Hort. J. 90(4), 428-449. Doi: https://doi.org/10.2503/hortj.UTD-271
  • Morimoto, H., T. Narumi-Kawasaki, T. Takamura, and S. Fukai. 2020. Flower color mutation caused by spontaneous cell layer displacement in carnation (Dianthus caryophyllus). Plant Sci. 299, 110598. Doi: https://doi.org/10.1016/j.plantsci.2020.110598
  • Onozaki, T. 2018. Dianthus. pp. 349-381. In: Van Huylenbroeck, J. (ed.). Ornamental crops. Handbook of plant breeding. Vol 11. Springer, Cham, Switzerland. Doi: https://doi.org/10.1007/978-3-319-90698-0_15
  • Parra-Coronado, A., G. Fischer, and J.H. Camacho-Tamayo. 2016. Growth model of the pineapple guava fruit as a function of thermal time and altitude. Ing. Inv. 36(3), 6-14. Doi: https://doi.org/10.15446/ing.investig.v36n3.52336
  • Parra-Coronado, A., G. Fischer, and B. Chaves-Cordoba. 2015. Tiempo térmico para estados fenológicos reproductivos de la feijoa (Acca sellowiana (O. Berg) Burret). Acta Biol. Colomb. 20(1), 167-177. Doi: https://doi.org/10.15446/abc.v20n1.43390
  • Pinzón-Sandoval, E.H., W. Pineda-Ríos, and P. Serrano-Cely. 2021. Mathematical models for describing growth in peach (Prunus persica [L.] Batsch.) fruit cv. Dorado. Rev. Colomb. Cienc. Hortic. 15(3), e13259. Doi: https://doi.org/10.17584/rcch.2021v15i3.13259
  • R Core Team. 2022. R: A language and environment for statistical computing. In: R Foundation for Statistical Computing, https://www.R-project.org/; consulted: March, 2021.
  • Romero-Cuervo, W.A., E.H. Pinzon-Sandoval, and M.A. Luis-Ayala. 2022. Phenology and growth flower of Dianthus caryophyllus L. cv. ‘MOON LIGHT’ under greenhouse. Rev. Cienc. Agr. 39(1), 7-15. Doi: https://doi.org/10.22267/rcia.223901.167
  • Sadras, V.O. and D.F. Calderini (eds.). 2021. Crop physiology case histories for major crops. Elsevier, London. Doi: https://doi.org/10.1016/B978-0-12-819194-1.09989-8
  • Salazar-Gutierrez, M.R., J. Johnson, B. Chaves-Cordoba, and G. Hoogenboom. 2013. Relationship of base temperature to development of winter wheat. Int. J. Plant Prod. 7(4), 741-762. Doi: https://doi.org/10.22069/ijpp.2013.1267
  • Sikder, S. 2009. Accumulated heat unit and phenology of wheat cultivars as influenced by late sowing heat stress condition. J. Agric. Rural Dev. 7(1-2), 59-64. Doi: https://doi.org/10.3329/jard.v7i1.4422
  • Singh, S.K., G.B. Badgujar, V.R. Reddy, D.H. Fleisher, and D.J. Timlin. 2013. Effect of phosphorus nutrition on growth and physiology of cotton under ambient and elevated carbon dioxide. J. Agron. Crop Sci. 199(6), 436-448. Doi: https://doi.org/10.1111/jac.12033
  • Taiz, L., E. Zeiger, I.A. Moller, and A. Murphy. 2018. Fundamentals of plant physiology. 6th ed. Sinauer Associates, New York, NY.
  • Tessmer, O.L., Y. Jiao, J.A. Cruz, D.M. Kramer, and J. Chen. 2013. Functional approach to high-throughput plant growth analysis. BMC Syst. Biol. 7(Suppl 6), S17. Doi: https://doi.org/10.1186/1752-0509-7-S6-S17
  • Trudgill, D.L., A. Honek, D. Li, and N.M. Van Straalen. 2005. Thermal time - Concepts and utility. Ann. Appl. Biol. 146(1), 1-14. Doi: https://doi.org/10.1111/j.1744-7348.2005.04088.x
  • Zhang, X., Q. Wang, S. Yang, S. Lin, M. Bao, M. Bendahmane, Q. Wu, C. Wang, and X. Fu. 2018. Identification and characterization of the MADS-Box genes and their contribution to flower organ in carnation (Dianthus caryophyllus L.). Genes 9(4), 193. Doi: https://doi.org/10.3390/genes9040193

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.