Trazando el terreno del marketing de influenciadores: Una revisión bibliométrica de Scopus y Wos

Resumen
El marketing de influencers es una estrategia que utilizan las empresas para promocionar sus productos o servicios a través de asociaciones con personas o entidades populares, conocidas como influencers, en varias plataformas de redes sociales. Este estudio se embarca en un análisis bibliométrico del marketing de influencers, utilizando las bases de datos Scopus y Web of Science (WoS) para recopilar datos bibliográficos completos. Empleando la metodología del diagrama de flujo PRISMA, esta investigación identifica, selecciona e incluye meticulosamente artículos pertinentes en el análisis bibliométrico, abordando la creciente importancia del marketing de influencers en las estrategias digitales contemporáneas. La singularidad de este estudio radica en su método de combinar datos bibliográficos de Scopus y WoS, utilizando el software RStudio para fusionar y eliminar duplicados, asegurando un conjunto de datos sólido para el análisis. Nuestros hallazgos delinean un panorama de creciente producción científica anual dentro del dominio, destacando las fuentes más influyentes, los autores y la aplicación de la Ley de Lotka para evaluar la productividad de los autores. Un análisis más detallado a través de la espectroscopia del año de publicación de referencia, mapas temáticos y redes de coocurrencia revelan temas de tendencias en evolución y puntos focales temáticos dentro del campo. Los análisis factoriales e historiográficos, además de examinar las redes de colaboración de los países, proporcionan una comprensión más profunda del impacto global y la naturaleza interdisciplinaria de la investigación de marketing de influencers. Este estudio bibliométrico no solo traza la trayectoria académica y los contribuyentes clave de la literatura sobre marketing de influencers, sino que también identifica importantes lagunas de investigación e implicaciones prácticas, ofreciendo una valiosa hoja de ruta para futuras investigaciones y aplicaciones estratégicas en el panorama dinámico del marketing digital.
Códigos JEL: M310
Recibido: 22/03/2024. Aceptado: 10/07/2024. Publicado: 05/01/2025.
Palabras clave
Marketing de Influencia, Análisis Bibliométrico, Biblioshiny, RStudio
Citas
- Abbas, A. F., Jusoh, A., Masod, A., & Ali, J. (2021). A Bibliometric Analysis of Publications on Social Media Influencers Using Vosviewer. Journal of Theoretical and Applied Information Technology, 99(23), 5662–5676.
- Achuthan, K., Nair, V. K., Kowalski, R., Ramanathan, S., & Raman, R. (2023). Cyberbullying research — Alignment to sustainable development and impact of COVID-19: Bibliometrics and science mapping analysis. Computers in Human Behavior, 140, 107566. https://doi.org/10.1016/j.chb.2022.107566 DOI: https://doi.org/10.1016/j.chb.2022.107566
- Agac, G., Sevim, F., Celik, O., Bostan, S., Erdem, R., & Yalcin, Y. I. (2023). Research hotspots, trends and opportunities on the metaverse in health education: A bibliometric analysis. Library Hi Tech. Advance online publication. https://doi.org/10.1108/LHT-04-2023-0168 DOI: https://doi.org/10.1108/LHT-04-2023-0168
- Ahuja, Y., & Loura, I. (2020). An investigative study of influencer marketing: Nuances, challenges and impact. Journal for Global Business Advancement. https://doi.org/10.1504/JGBA.2020.10035200 DOI: https://doi.org/10.1504/JGBA.2020.112824
- Baas, J., Schotten, M., Plume, A., Côté, G., & Karimi, R. (2020). Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quantitative Science Studies, 1(1), 377–386. https://doi.org/10.1162/qss_a_00019 DOI: https://doi.org/10.1162/qss_a_00019
- Birkle, C., Pendlebury, D. A., Schnell, J., & Adams, J. (2020). Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies, 1(1), 363–376. https://doi.org/10.1162/qss_a_00018 DOI: https://doi.org/10.1162/qss_a_00018
- Borgohain, D. J., Bhardwaj, R. K., & Verma, M. K. (2022). Mapping the literature on the application of artificial intelligence in libraries (AAIL): A scientometric analysis. Library Hi Tech. Advance online publication. https://doi.org/10.1108/LHT-07-2022-0331 DOI: https://doi.org/10.1108/LHT-07-2022-0331
- Brown, D., & Hayes, N. (2008). Influencer marketing. https://doi.org/10.4324/9780080557700 DOI: https://doi.org/10.4324/9780080557700
- Bu, Y., Parkinson, J., & Thaichon, P. (2022). Influencer marketing: Sponsorship disclosure and value co-creation behaviour. Marketing Intelligence and Planning, 40(7), 854–870. https://doi.org/10.1108/MIP-09-2021-0310 DOI: https://doi.org/10.1108/MIP-09-2021-0310
- Cartwright, S., Liu, H., & Davies, I. A. (2022). Influencer marketing within business-to-business organisations. Industrial Marketing Management, 106, 338–350. https://doi.org/10.1016/j.indmarman.2022.09.007 DOI: https://doi.org/10.1016/j.indmarman.2022.09.007
- Chen, C., Dubin, R., & Kim, M. C. (2014). Emerging trends and new developments in regenerative medicine: A scientometric update (2000 – 2014). Expert Opinion on Biological Therapy, 14(9), 1295–1317. https://doi.org/10.1517/14712598.2014.920813 DOI: https://doi.org/10.1517/14712598.2014.920813
- Farivar, S., Wang, F., & Yuan, Y. (2021). Opinion leadership vs. Para-social relationship: Key factors in influencer marketing. Journal of Retailing and Consumer Services, 59. https://doi.org/10.1016/j.jretconser.2020.102371 DOI: https://doi.org/10.1016/j.jretconser.2020.102371
- Gavel, Y., & Iselid, L. (2008). Web of Science and Scopus: A journal title overlap study. Online Information Review, 32(1), 8–21. DOI: https://doi.org/10.1108/14684520810865958
- Godin, B. (2006). On the origins of bibliometrics. Scientometrics, 68(1), 109–133. https://doi.org/10.1007/s11192-006-0086-0 DOI: https://doi.org/10.1007/s11192-006-0086-0
- Gonzales-Torres, X. B., Cruz-Cabrera, B. C., Méndez-Prada, M. C., & Acevedo-Martínez, J. A. (2023). Revisión bibliométrica de la literatura sobre economía social y solidaria en las áreas de economía, econometría, finanzas, negocios, gestión y contabilidad. Inquietud Empresarial, 23(1), e15523. https://doi.org/10.19053/01211048.15523 DOI: https://doi.org/10.19053/01211048.15523
- Guleria, D., & Kaur, G. (2021). Bibliometric analysis of ecopreneurship using VOSviewer and RStudio Bibliometrix, 1989–2019. Library Hi Tech, 39(4), 1001–1024. https://doi.org/10.1108/LHT-09-2020-0218 DOI: https://doi.org/10.1108/LHT-09-2020-0218
- Hood, W. W., & Wilson, C. S. (2001). The Literature of Bibliometrics, Scientometrics, and Informetrics. Scientometrics, 52(2), 291–314. DOI: https://doi.org/10.1023/A:1017919924342
- Hugh, D. C., Dolan, R., Harrigan, P., & Gray, H. (2022). Influencer marketing effectiveness: The mechanisms that matter. European Journal of Marketing, 56(12), 3485–3515. https://doi.org/10.1108/EJM-09-2020-0703 DOI: https://doi.org/10.1108/EJM-09-2020-0703
- Jarrar, Y., Awobamise, A. O., & Aderibigbe, A. A. (2020). Effectiveness of influencer marketing vs social media sponsored advertising. Utopia y Praxis Latinoamericana, 25(12), 40–54. https://doi.org/10.5281/zenodo.4280084
- John, S. P., & Supramaniam, S. (2023). Antecedents and Effects of Influencer Marketing Strategies: A Systematic Literature Review and Directions for Future Research. In Springer Proceedings in Business and Economics (pp. 113–119). https://doi.org/10.1007/978-3-031-31836-8_15 DOI: https://doi.org/10.1007/978-3-031-31836-8_15
- Joseph, J., Jose, J., Jose, A. S., Ettaniyil, G. G., John, J., & D Nellanat, P. (2023). Unveiling the research impact: A visualization study of ChatGPT’s influence on the scientific landscape. Journal of Theoretical and Applied Information Technology, 101(22).
- Joshi, Y., Lim, W. M., Jagani, K., & Kumar, S. (2023). Social media influencer marketing: Foundations, trends, and ways forward. Electronic Commerce Research. https://doi.org/10.1007/s10660-023-09719-z DOI: https://doi.org/10.1007/s10660-023-09719-z
- Kay, S., Mulcahy, R., Sutherland, K., & Lawley, M. (2023). Disclosure, content cues, emotions and behavioural engagement in social media influencer marketing: An exploratory multi-stakeholder perspective. Journal of Marketing Management, 39(7–8), 550–584. https://doi.org/10.1080/0267257X.2022.2118815 DOI: https://doi.org/10.1080/0267257X.2022.2118815
- Komperda, R. (2017). Likert-type survey data analysis with R and RStudio. In ACS Symposium Series (Vol. 1260, pp. 91–116). https://doi.org/10.1021/bk-2017-1260.ch007 DOI: https://doi.org/10.1021/bk-2017-1260.ch007
- Le, K., & Aydin, G. (2023). Impact of the pandemic on social media influencer marketing in fashion: A qualitative study. Qualitative Market Research, 26(4), 449–469. https://doi.org/10.1108/QMR-11-2021-0133 DOI: https://doi.org/10.1108/QMR-11-2021-0133
- Leung, F. F., Gu, F. F., Li, Y., Zhang, J. Z., & Palmatier, R. W. (2022). Influencer Marketing Effectiveness. Journal of Marketing, 86(6), 93–115. https://doi.org/10.1177/00222429221102889 DOI: https://doi.org/10.1177/00222429221102889
- Lou, C., & Yuan, S. (2019). Influencer Marketing: How Message Value and Credibility Affect Consumer Trust of Branded Content on Social Media. Journal of Interactive Advertising, 19, 58–73. https://doi.org/10.1080/15252019.2018.1533501 DOI: https://doi.org/10.1080/15252019.2018.1533501
- Luo, X., & Hussain, W. M. H. W. (2023). A Bibliometric Analysis and Visualization of Influencer Marketing. Journal of System and Management Sciences, 13(4), 59–73. https://doi.org/10.33168/JSMS.2023.0404 DOI: https://doi.org/10.33168/JSMS.2023.0404
- Martínez-López, F. J., Anaya-Sánchez, R., Fernández Giordano, M., & Lopez-Lopez, D. (2020). Behind influencer marketing: Key marketing decisions and their effects on followers’ responses. Journal of Marketing Management, 36(7–8), 579–607. https://doi.org/10.1080/0267257X.2020.1738525 DOI: https://doi.org/10.1080/0267257X.2020.1738525
- Mero, J., Vanninen, H., & Keränen, J. (2023). B2B influencer marketing: Conceptualization and four managerial strategies. Industrial Marketing Management, 108, 79–93. https://doi.org/10.1016/j.indmarman.2022.10.017 DOI: https://doi.org/10.1016/j.indmarman.2022.10.017
- Mouritzen, S. L. T., Penttinen, V., & Pedersen, S. (2023). Virtual influencer marketing: The good, the bad and the unreal. European Journal of Marketing. Advance online publication. https://doi.org/10.1108/EJM-12-2022-0915 DOI: https://doi.org/10.1108/EJM-12-2022-0915
- Nadanyiova, M., Gajanova, L., Majerova, J., & Lizbetinova, L. (2020). Influencer marketing and its impact on consumer lifestyles. Forum Scientiae Oeconomia,, 8(2), 109–120. https://doi.org/10.23762/FSO_VOL8_NO2_7
- Nguyen, H. D., Nguyen, K. V., Hoang, S. N., & Huynh, T. (2020). Design a Management System for the Influencer Marketing Campaign on Social Network. In Lecture Notes in Computer Science (Vol. 12575, pp. 139–151).Springer. https://doi.org/10.1007/978-3-030-66046-8_12 DOI: https://doi.org/10.1007/978-3-030-66046-8_12
- Palermo García, B., & Salazar-Velázquez, R. (2023). Transporte en la logística verde: Análisis bibliométrico. Inquietud Empresarial, 23(2), e15998. https://doi.org/10.19053/01211048.15998 DOI: https://doi.org/10.19053/01211048.15998
- Racine, J. S. (2012). RStudio: A platform-independent IDE for R and Sweave. Journal of Statistical Software, 42(1), 1–28. JSTOR.
- Ribeiro, M. I., Fernandes, A. J., & Fernandes, A. P. (2020). Influencer marketing: A bibliometric analysis of scientific production from the scopus database; [Influencer marketing: Uma análise bibliométrica da produção científica da base de dados scopus]. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, (E34), 77–90.
- Souza de Cursi, E. (2023). Some Tips to Use R and RStudio. In E. Souza de Cursi (Ed.), Uncertainty Quantification using R (pp. 1–108). Springer International Publishing. https://doi.org/10.1007/978-3-031-17785-9_1 DOI: https://doi.org/10.1007/978-3-031-17785-9_1
- Syed, T. A., Mehmood, F., & Qaiser, T. (2023). Brand–SMI collaboration in influencer marketing campaigns: A transaction cost economics perspective. Technological Forecasting and Social Change, 192, 122580. https://doi.org/10.1016/j.techfore.2023.122580 DOI: https://doi.org/10.1016/j.techfore.2023.122580
- Tanwar, A. S., Chaudhry, H., & Srivastava, M. K. (2022). Trends in Influencer Marketing: A Review and Bibliometric Analysis. In Journal of Interactive Advertising, 22(1), 1–27. https://doi.org/10.1080/15252019.2021.2007822 DOI: https://doi.org/10.1080/15252019.2021.2007822
- Thangavel, P., & Chandra, B. (2023). Two Decades of M-Commerce Consumer Research: A Bibliometric Analysis Using R Biblioshiny. Sustainability, 15(15), 11835. https://doi.org/10.3390/su151511835 DOI: https://doi.org/10.3390/su151511835
- Valadez-Solana, B. D., Cruz-Cabrera, B. C., Huesca-Gastélum, M. I., & Castillo-Leal, M. (2023). Emprendimiento social e innovación social: Un análisis bibliométrico. Inquietud Empresarial, 23(2), e15874. https://doi.org/10.19053/01211048.15874 DOI: https://doi.org/10.19053/01211048.15874
- Waghmare, P. (2021). Bibliometric Analysis of Global Research Trends on E-Waste Management from Scopus Database seen through Biblioshiny. Library Philosophy and Practice, 2021, 1–16.
- Wang, N. (2023). Influencer Marketing Strategies in Foreign Marketplaces. In Springer Proceedings in Business and Economics (pp. 86–90). Springer. https://doi.org/10.1007/978-3-031-31836-8_11 DOI: https://doi.org/10.1007/978-3-031-31836-8_11
- Wulandari, T. A., & Assidiq, M. I. (2023). Influencer marketing strategy of a start-up company as the provider of fast-moving consumer goods (FMCG) products in Indonesia. Journal of Eastern European and Central Asian Research, 10(4), 569–579. https://doi.org/10.15549/jeecar.v10i4.1365 DOI: https://doi.org/10.15549/jeecar.v10i4.1365
- Yamashita, R. (2016). What is influencer marketing? Screen Printing, 107(4), 24–25.
- Yu, Y., Li, Y., Zhang, Z., Gu, Z., Zhong, H., Zha, Q., Yang, L., Zhu, C., & Chen, E. (2020). A bibliometric analysis using VOSviewer of publications on COVID-19. Annals of Translational Medicine, 8(13), 816. https://doi.org/10.21037/atm-20-4235 DOI: https://doi.org/10.21037/atm-20-4235
- Zhou, S., Blazquez, M., McCormick, H., & Barnes, L. (2021). How social media influencers’ narrative strategies benefit cultivating influencer marketing: Tackling issues of cultural barriers, commercialised content, and sponsorship disclosure. Journal of Business Research, 134, 122–142. https://doi.org/10.1016/j.jbusres.2021.05.011 DOI: https://doi.org/10.1016/j.jbusres.2021.05.011