Reducción de ruido espectral en imágenes hiperespectrales mediante la transformada wavelet discreta
Spectral denoising in hyperspectral imaging using the discrete wavelet transform
Contenido principal del artículo
Resumen
El uso de sensores hiperespectrales ha tomado relevancia en la agricultura, debido a su potencial en el manejo fitosanitario de cultivos. Sin embargo, estos sensores son sensibles al registro de ruido espectral, lo cual dificulta su aplicación real. Por lo anterior, este trabajo se centró en el análisis del ruido espectral presente en un banco de 180 imágenes hiperespectrales de hojas de mango adquiridas en laboratorio, y la implementación de una técnica de reducción de ruido basada en la transformada discreta de wavelet. El análisis de ruido consistió en la identificación de las bandas de mayor ruido, mientras que el desempeño de la técnica fue medido con las métricas PSNR y SNR. Como resultado, se determinó que el ruido espectral estuvo presente en los extremos del espectro (417-421nm y 969-994nm), mientras que el método Neigh-Shrink alcanzó un SNR del orden de 1011 con respecto al orden de 102 del espectro original.
Palabras clave:
Descargas
Detalles del artículo
Referencias (VER)
Bjorgan, A., & Randeberg, L. L. (2015). Real-time noise removal for line-scanning hyperspectral devices using a Minimum Noise Fraction-based approach. Sensors, 15 (2), 3362-3378. https://doi.org/10.3390/s150203362
Chen, G. Y., Bui, T. D., & Krzyżak, A. (2005). Image denoising with neighbour dependency and customized wavelet and threshold. Pattern Recognition, 38, 115-124.
Chen, Y., Li, J., & Zhou, Y. (2020). Hyperspectral image denoising by total variation-regularized bilinear factorization. Signal Processing, 174, id 107645. https://doi.org/10.1016/j.sigpro.2020.107645
Dos Santos Netoa, J. P., Dantas de Assisb, M. W., Parkutz Casagrandea, I., Cunha Júniorc, L. C., & de Almeida Teixeiraa, G. H. (2017). Determination of ‘Palmer’ mango maturity indices using portable near infrared (VIS-NIR) spectrometer. Postharvest Biology and Technology, 130, 75-80.
Fan, H., Li, J., Yuan, Q., Liu, X., & Ng, M. (2019). Hyperspectral image denoising with bilinear low rank matrix factorization. Signal Processing, 163, 132-152. https://doi.org/10.1016/j.sigpro.2019.04.029
Farzam, M., & Baheshti, S. (2011). Information Theoretic assessment of correlated noise in hyperspectral signal unmixing. 2011 24th Canadian Conference on Electrical and Computer Engineering (CCECE).
Heylen, R., Burazerovic, D., & Scheunders, P. (2011). Constrained Least Squares Spectral Unmixing by Simplex Projection. IEEE Transactions on Geoscience and Remote Sensing, 49 (11), 4112-4122.
Karami, A., Heylen, R., & Scheunders, P. (2014). Hyperspectral image noise reduction and its effect on spectral unmixing. 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).
Liao, W., Aelterman, J., Luong, H. Q., Pižurica, A., & Philips, W. (2013). Two-stage denoising method for hyperspectral images combining KPCA and total variation. Proceedings of the 20th IEEE International Conference on Image Processing (ICIP '13), 2048–2052.
Munera, S., Besada, C., Aleixos, N., Talens, P., Salvador, A., Sun, D., Cubero, S., & Blasco, J. (2017). Non-destructive assessment of the internal quality of intact persimmon using colour and VIS/NIR hyperspectral imaging. LWT, 77, 241-248.
Navrozidis, I., Alexandridis, T., Dimitrakos, A., Lagopodi, A., Moshou, D., & Zalidis, G. (2018). Identification of purple spot disease on asparagus crops across spatial and spectral scales. Computers and Electronics in Agriculture, 148, 322-329. https://doi.org/10.1016/j.compag.2018.03.035
Pinto, J., Rueda-Chacón, H., & Arguello, H. (2019). Classification of Hass avocado (persea americana mill) in terms of its ripening via hyperspectral images. TecnoLógicas, 22 (45), 109-128.
Vélez-Rivera, N., Gómez-Sanchis, J., Chanona-Pérez, J., Carrasco, J., Millán-Giraldo, M., Lorente, D., Cubero, S., & Blasco, J. (2014). Early detection of mechanical damage in mango using NIR hyperspectral images and machine learning. Biosystems Engineering, 122, 91-98. https://doi.org/10.1016/J.BIOSYSTEMSENG.2014.03.009
Yuan, Q., Zhang, Q., Li, J., Shen, H., & Zhang, L. (2019). Hyperspectral Image Denoising Employing a Spatial–Spectral Deep Residual Convolutional Neural Network. IEEE Transactions on Geoscience and Remote Sensing, 57 (2), 1205-1218. https://doi.org/10.1109/TGRS.2018.2865197
Zarco-Tejada, P. J., Camino, C., Beck, P. S. A., Calderon, R., Hornero, A., Hernández-Clemente, R., Kattenborn, T., Montes-Borrego, M., Susca, L., Morelli, M., Gonzalez-Dugo, V., North, P. R. J., Landa, B. B., Boscia, D., Saponari, M., & Navas-Cortes, J. A. (2018). Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nature Plants, 4, 432–439.
Zelinski, A. C., & Goyal, V. K. (2014). A Novel approach to hyperspectral bands election based on spectral shape similarity analysis and fast branch and bound search. Engineering Applications of Artificial Intelligence, 27, 241–250.